Advertisement

Hydrobiologia

, Volume 792, Issue 1, pp 105–120 | Cite as

Influence of operational parameters on nutrient removal from eutrophic water in a constructed wetland

  • Núria OliverEmail author
  • Miguel Martín
  • Sara Gargallo
  • Carmen Hernández-CrespoEmail author
Primary Research Paper

Abstract

The present study offers several management strategies in order to improve the performance of a free water surface constructed wetland that treats mainly eutrophic water and which is also designed to improve and increase the biodiversity of habitat and wildlife. To attain these goals, it has been necessary to analyze the influence of certain operational parameters and environmental factors on the mass removal rates (MRRs) and the mass removal efficiencies (MREs), depending on if the objective is to maximize nutrient removal or to achieve low effluent concentrations. The system, referred to as FG, operated in a range of hydraulic loading rates (HLRs) from 7 to 58 m year−1 and removed phosphorus (P) and nitrogen (N) at an average rate of 7.15 g P m−2 year−1 and 60.07 g N m−2 year−1. P and N removal varied seasonally, mainly due to input concentrations (C in), but inlet mass loading and HLRs also strongly influenced MRRs. Based on these results, we propose to maintain a mean HLR of 58 m year−1 in winter and 25 m year−1 in summer to increase annual nutrient removal and thereby barely affecting pumping costs.

Keywords

Free water surface constructed wetland Eutrophication Hydraulic and nutrient loading Nutrient removal Albufera de València Lake 

Abbreviations

FWSCWs

Free water surface constructed wetlands

FG

The FWSCW studied

MRRs

Mass removal rates

MREs

Mass removal efficiencies

HLRs

Hydraulic loading rates

P

Phosphorus

N

Nitrogen

Cin

Input concentrations

IML

Inlet mass loading

AV Lake

l’Albufera de València Lake

AVNP

l’Albufera de València Natural Park

CWs

Constructed wetlands

BP

Barranco del Poyo

DIN

Dissolved inorganic nitrogen

DIP

Orthophosphates

n-DIP

Non-orthophosphate phosphorus

DO

Dissolved oxygen

Notes

Acknowledgements

Núria Oliver acknowledges the scholarship provided by the Generalitat Valenciana, Spain (VALi + D PhD Program). The authors are also grateful to the Confederación Hidrográfica del Jucar (CHJ, MMARM) for the financial support of the project.

Compliance with ethical standards

Ethical approval

This manuscript has been prepared according to the ethical rules of Hydrobiologia and it has not been submitted to other journals.

References

  1. APHA, 1991. Standard Methods for the Examination of Water and Wastewater, 17th ed. American Publish Health Association, Washington DC.Google Scholar
  2. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology 35(5): 11–17.CrossRefGoogle Scholar
  3. CHJ, 2012. (Ed.). Memoria de investigación del Tancat de la Pipa. Technical report for the Spanish Water Authorities.Google Scholar
  4. Comín, F. A., J. A. Romero, O. Hernández & M. Menéndez, 2001. Restoration of wetlands from abandoned rice fields for nutrient removal, and biological community and landscape diversity. Restoration Ecology 9(2): 201–208.CrossRefGoogle Scholar
  5. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs, 2nd ed. Lewis Publishers, Boca Raton, FL.Google Scholar
  6. Coveney, M. F., D. L. Stites, E. F. Lowe, L. E. Battoe & R. Conrow, 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19: 141–159.CrossRefGoogle Scholar
  7. Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow & R. Naleway, 2012. Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from lake Apopka, Florida. Ecological Engineering 42: 90–100.CrossRefGoogle Scholar
  8. Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe, L. E. Battoe & P. W. Inglett, 2013. Nitrogen dynamics of a large-scale constructed wetland used to remove excess nitrogen from eutrophic lake water. Ecological Engineering 61: 224–234.CrossRefGoogle Scholar
  9. Dunne, E. J., M. F. Coveney, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe, L. E. Battoe & Y. Wang, 2015. Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water. Ecological Engineering 79: 132–142.CrossRefGoogle Scholar
  10. Fleming-Singer, M. S. & A. J. Horne, 2006. Balancing wildlife needs and nitrate removal in constructed wetlands: the case of the Irvine Ranch Water District’s San Joaquin Wildlife Sanctuary. Ecological Engineering 26: 147–166.CrossRefGoogle Scholar
  11. García, J., B. F. Green, T. Lundquist, R. Mujeriego, M. Hernández-Mariné & W. J. Oswald, 2006. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology 97: 1709–1715.CrossRefPubMedGoogle Scholar
  12. Gersberg, R. J., B. V. Elking, S. R. Lyong & C. R. Goldman, 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research 20: 363–367.CrossRefGoogle Scholar
  13. Hernández-Crespo, C., N. Oliver, J. Bixquert, S. Gargallo & M. Martín, 2016. Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia 774: 183–192.CrossRefGoogle Scholar
  14. Hey, D. L., A. L. Kenimer & K. R. Barret, 1994. Water quality improvement by four experimental wetlands. Ecological Engineering 3: 381–397.CrossRefGoogle Scholar
  15. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  16. Jiang, C., X. Fan, G. Cui & Y. Zhang, 2007. Removal of agricultural non-point source pollutants by ditch wetlands: implications for lake eutrophication control. Hydrobiologia 581: 319–327.CrossRefGoogle Scholar
  17. Jing, S. R. & Y. F. Lin, 2004. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environmental Pollution 127: 291–301.CrossRefPubMedGoogle Scholar
  18. Kadlec, R. H., 1999. The limits of phosphorus removal in wetlands. Wetlands Ecology and Management 7: 165–175.CrossRefGoogle Scholar
  19. Kadlec, R. H., 2006. Free surface wetlands for phosphorus removal: the position of the Everglades Nutrient Removal Project. Ecological Engineering 27: 361–379.CrossRefGoogle Scholar
  20. Kadlec, R. H. & R. L. Knight, 1996. Treatment Wetlands. CRC/Lewis Publishers, Boca Raton FL: 893.Google Scholar
  21. Kadlec, R. H. & K. R. Reddy, 2001. Temperature effects in treatment wetlands. Water Environment Research 73: 543–557.CrossRefPubMedGoogle Scholar
  22. Kadlec, R. H. & S. D. Wallace, 2009. Treatment Wetlands, 2nd ed. CRC Press, Boca Raton, FL.Google Scholar
  23. Kadlec, R. H., S. B. Roy, R. K. Munson, S. Charlton & W. Brownlie, 2010. Water quality performance of treatment wetlands in the Imperial Valley, California. Ecological Engineering 36: 1093–1107.CrossRefGoogle Scholar
  24. Kadlec, R. H., J. S. Bays, L. E. Mokry, S. Andrews & M. R. Ernst, 2011. Performance analysis of the Richland-Chambers treatment wetlands. Ecological Engineering 37: 176–190.CrossRefGoogle Scholar
  25. Li, L., Y. Li, D. K. Biswas, Y. Nian & G. Jiang, 2008. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology 99: 1656–1663.CrossRefPubMedGoogle Scholar
  26. Mander, Ü., K. Lõhmus, S. Teiter, T. Mauring, K. Nurk & J. Augustin, 2008. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Science of the Total Environment 404(2): 343–353.CrossRefPubMedGoogle Scholar
  27. Martín, M., N. Oliver, C. Hernández-Crespo, S. Gargallo & M. C. Regidor, 2013. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering 50: 52–61.CrossRefGoogle Scholar
  28. Mitsch, W. J. & J. G. Gosselink, 2000. Wetlands, 3rd ed. Wiley, New York.Google Scholar
  29. Mitsch, W. J., B. Bernal, A. M. Nahlik, Ü. Mander, L. Zhang, C. J. Anderson, S. E. Jørgensen & H. Brix, 2013. Wetlands, carbon, and climate change. Landscape Ecology 28(4): 583–597.CrossRefGoogle Scholar
  30. Moustafa, M. Z., T. D. Fontaine, M. Guardo & R. T. James, 1998. The response of a freshwater wetland to long-term ‘low level’ nutrients loads: nutrients and water budget. Hydrobiologia 264: 41–53.Google Scholar
  31. Nairn, R. W. & W. M. Mitsch, 2000. Phosphorus removal in created wetland ponds receiving river overflow. Ecological Engineering 14: 107–126.CrossRefGoogle Scholar
  32. Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. Water Pollution Control Federation 55(5): 495–505.Google Scholar
  33. Phipps, R. G. & W. G. Crumpton, 1994. Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecological Engineering 3: 399–408.CrossRefGoogle Scholar
  34. Phillips, G., A. Bramwell, J. Pitt, J. Stansfield & M. Perrow, 1999. Practical application of 25 years’ research into the management of shallow lakes. Hydrobiologia 395(396): 61–76.CrossRefGoogle Scholar
  35. Picot, B., S. Moersidik, C. Casellas & J. Bontoux, 1993. Using diurnal variations in a high rate algal pond for management pattern. Water Science and Technology 28(10): 209–215.Google Scholar
  36. Pomogyi, P., 1993. Nutrient retention by the Kis-Balaton Water Protection System. Hydrobiologia 251: 309–320.CrossRefGoogle Scholar
  37. Reddy, K. R., R. H. Kadlec, E. Flaig & P. M. Gale, 1999. Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology 29(1): 83–146.CrossRefGoogle Scholar
  38. Reilly, J. F., A. J. Horne & C. D. Miller, 2000. Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecological Engineering 14: 33–47.CrossRefGoogle Scholar
  39. Richardson, C. J. & S. S. Quian, 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environmental Science and Technology 33(10): 1545–1551.CrossRefGoogle Scholar
  40. Rodrigo, M. A., M. Martín, C. Rojo, S. Gargallo, M. Segura & N. Oliver, 2013. The role of eutrophication reduction of two small man-made Mediterranean lagoons in the context of a broader remediation system: effects on water quality and plankton contribution. Ecological Engineering 61: 371–382.CrossRefGoogle Scholar
  41. Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.CrossRefPubMedGoogle Scholar
  42. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.CrossRefPubMedGoogle Scholar
  43. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–507: 135–145.CrossRefGoogle Scholar
  44. Sollie, S., H. Coops & J. T. A. Verhoeven, 2008. Natural and constructed littoral zones as nutrient traps in eutrophicated shallow lakes. Hydrobiologia 605: 219–233.CrossRefGoogle Scholar
  45. Spieles, D. J. & W. J. Mitsch, 2000. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecological Engineering 14: 77–91.CrossRefGoogle Scholar
  46. Tang, X., S. Huang, M. Scholz & L. Jinzhong, 2009. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water air Soil Pollution 197: 61–73.CrossRefGoogle Scholar
  47. Tanner, C. C., J. S. Clayton & M. P. Upsdell, 1995. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands – II. Removal of nitrogen and phosphorus. Water Research 29: 27–34.CrossRefGoogle Scholar
  48. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380: 48–65.CrossRefPubMedGoogle Scholar
  49. Zamparas, M. & I. Zacharias, 2014. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Science of the Total Environmental 96: 551–562.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto Ingeniería del Agua y Medio AmbienteUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations