Skip to main content
Log in

Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia

  • ROTIFERA XIV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As lakes warm worldwide, temperature may alter plankton community structure and abundance by affecting not only metabolism but also trophic interactions. Siberia’s Lake Baikal presents special opportunity for studying shifting trophic interactions among cryophilic zooplankton species in a rapidly warming lake. To understand how warming may affect trophic interactions among plankton, we studied predator–prey relationships of a copepod predator (Cyclops kolensis) with three prey types: two rotifer species (Gastropus stylifer and Keratella cochlearis) and copepod nauplii. We hypothesized that the less evasive Gastropus and Keratella would be more susceptible to predation than nauplii. We exposed a starved predator to individuals of each prey type and observed encounters, ingestions, and escapes. Contrary to our hypothesis, Keratella were consumed at lower rates than nauplii, due to higher probability of ingestion after encounter with nauplii. In a second experiment, we assessed how predation varied across a thermal gradient, confining all three prey types and one starved predator at 5° temperature increments (5–20°C). Predation outcomes mirrored observational feeding trials, and predation outcomes were independent of temperature. Rotifers’ relatively high reproductive rate may present a mechanism to withstand predation should copepod’s preferred nauplii prey become less abundant in a warmer Baikal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afanasyeva, E. L., 1977. Biology of Epischura in Lake Baikal. Nauka, Novosibirsk, 144 pp.

  • Allan, J. D., 1976. Life history patterns in zooplankton. American Naturalist 100: 165–180.

    Article  Google Scholar 

  • Bondarenko, N. A., A. Tuji & M. Nakanishi, 2006. A comparison of phytoplankton communities between the ancient Lakes Biwa and Baikal. Hydrobiologia 568: 25–29.

    Article  Google Scholar 

  • Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489.

    Article  Google Scholar 

  • Dell, A. I., S. Pawar & V. M. Savage, 2011. Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of USA 108: 10591–10596.

    Article  CAS  Google Scholar 

  • Dell, A. I., S. Pawar & V. M. Savage, 2014. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology 83: 70–84.

    Article  PubMed  Google Scholar 

  • Devetter, M. & J. Seďa, 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Římov Reservoir in spring. International Review of Hydrobiology 91: 101–112.

    Article  CAS  Google Scholar 

  • Edmondson, W. T., 1946. Factors in the dynamics of rotifer populations. Ecological Monographs 16: 357.

    Article  Google Scholar 

  • Ekvall, M. K. & L.-A. Hansson, 2012. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions. PLoS One 7: e44614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott, J. A., I. D. Jones & S. J. Thackeray, 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559: 401–411.

    Article  CAS  Google Scholar 

  • George, D. G., 1976. Life cycle and production of Cyclops vicinus in a shallow eutrophic reservoir. Oikos 27: 101.

    Article  Google Scholar 

  • Gilbert, J. J. & C. E. Williamson, 1978. Predator–prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37: 13–22.

    Article  PubMed  Google Scholar 

  • Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.

    Article  Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1984. Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnology and Oceanography 29: 1309–1316.

    Article  Google Scholar 

  • Gyllström, M., L. A. Hansson, E. Jeppesen, F. G. Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijów, M. R. Miracle, M. Nykänen, & others, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.

  • Halbach, U., 1973. Life table data and population dynamics of the rotifer Brachionus calyciflorus Pallas as influenced by periodically oscillating temperature. In Effects of Temperature on Ectothermic Organisms. Springer, Berlin: 217–228.

  • Hambright, K. D., T. Zohary & H. Güde, 2007. Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography 52: 1018–1025.

    Article  CAS  Google Scholar 

  • Hampton, S. E., L. R. Izmest’eva, M. V. Moore, S. L. Katz, B. Dennis & E. A. Silow, 2008. Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change Biology 14: 1947–1958.

    Article  PubMed Central  Google Scholar 

  • Hampton, S. E., D. K. Gray, L. R. Izmest’eva, M. V. Moore & T. Ozersky, 2014. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia. PLoS One 9: e88920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins, K. A., M. J. Vanni & M. J. González, 2006. Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos 114: 419–430.

    Article  CAS  Google Scholar 

  • Huey, R. B., 1991. Physiological consequences of habitat selection. American Naturalist 137: 91–115.

    Article  Google Scholar 

  • Izmest’eva, L. R., E. A. Silow & E. Litchman, 2011. Long-term dynamics of Lake Baikal pelagic phytoplankton under climate change. Inland Water Biology 4: 301–307.

    Article  Google Scholar 

  • Izmest’eva, L. R., M. V. Moore, S. E. Hampton, C. J. Ferwerda, D. K. Gray, K. H. Woo, H. V. Pislegina, L. S. Krashchuk, S. V. Shimaraeva & E. A. Silow, 2016. Lake-wide physical and biological trends associated with warming in Lake Baikal. Journal of Great Lakes Research 42: 6–17.

    Article  Google Scholar 

  • Kostopoulou, V. & O. Vadstein, 2007. Growth performance of the rotifers Brachionus plicatilis, B.Nevada” and B.Cayman” under different food concentrations. Aquaculture 273: 449–458.

    Article  Google Scholar 

  • Kozhov, M. M., 1963. Lake Baikal and Its Life. W. Junk, The Hague: 344.

    Book  Google Scholar 

  • Kozhova, O. M. & L. R. Izmest’eva, 1998. Lake Baikal: Evolution and Biodiversity. Backhuys Publishers, Leiden: 447 pp.

  • Kozhova, O. M., N. G. Mel’nik & G. I. Pomazkova (eds). 1978. Инcтpyкция пo oбpaбoткe пpoб плaнктoнa cчeтным мeтoдoм (Instructions for Processing and Counting Plankton Samples). Publications of Irkutsk State University: 1–50.

  • Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnology and Oceanography 25: 620–632.

    Article  CAS  Google Scholar 

  • Melnik, N. G., N. A. Bondarenko, O. I. Belykh, V. V. Blinov, V. G. Ivanov, I. V. Korovyakova, T. Y. Kostornova, M. I. Lazarev, N. F. Logacheva, G. I. Pomazkova, P. P. Sherstyankin, L. M. Sorokovikova, L. I. Tolstikova & E. P. Tereza, 2006. Distribution of pelagic invertebrates near a thermal bar in Lake Baikal. Hydrobiologia 568: 69–76.

    Article  Google Scholar 

  • Moore, M. V., C. L. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.

    Google Scholar 

  • Moore, M. V., S. E. Hampton, L. R. Izmest’eva, E. A. Silow, E. V. Peshkova & B. K. Pavlov, 2009. Climate change and the world’s “sacred sea” – Lake Baikal, Siberia. Bioscience 59: 405–417.

    Article  Google Scholar 

  • Nandini, S., F. S. Zúñiga-Juárez & S. S. S. Sarma, 2014. Direct and indirect effects of invertebrate predators on population level responses of the rotifer Brachionus havanaensis (Rotifera): direct and indirect effects of invertebrate predators. International Review of Hydrobiology 99: 107–116.

    Article  Google Scholar 

  • O’Reilly, C. M., S. Sharma, D. K. Gray, S. E. Hampton, J. S. Read, R. J. Rowley, P. Schneider, J. D. Lenters, P. B. McIntyre, B. M. Kraemer, G. A. Weyhenmeyer, D. Straile, B. Dong, R. Adrian, M. G. Allan, O. Anneville, L. Arvola, J. Austin, J. L. Bailey, J. S. Baron, J. D. Brookes, E. de Eyto, M. T. Dokulil, D. P. Hamilton, K. Havens, A. L. Hetherington, S. N. Higgins, S. Hook, L. R. Izmest’eva, K. D. Joehnk, K. Kangur, P. Kasprzak, M. Kumagai, E. Kuusisto, G. Leshkevich, D. M. Livingstone, S. MacIntyre, L. May, J. M. Melack, D. C. Mueller-Navarra, M. Naumenko, P. Noges, T. Noges, R. P. North, P.-D. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L. G. Rudstam, J. A. Rusak, N. Salmaso, N. R. Samal, D. E. Schindler, S. G. Schladow, M. Schmid, S. R. Schmidt, E. Silow, M. E. Soylu, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, C. E. Williamson & G. Zhang, 2015. Rapid and highly variable warming of lake surface waters around the globe: global lake surface warming. Geophysical Research Letters 42: 10773–10781.

    Article  Google Scholar 

  • Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2007. Combined effects of temperature, food (Chlorella vulgaris) concentration and predation (Asplanchna girodi) on the morphology of Brachionus havanaensis (Rotifera). Hydrobiologia 593: 95–101.

    Article  Google Scholar 

  • Plassmann, T., G. Maier & H. B. Stich, 1997. Predation impact of Cyclops vicinus on the rotifer community in Lake Constance in spring. Journal of Plankton Research 19: 1069–1079.

    Article  Google Scholar 

  • Pomazkova, G. I. & E. N. Kuzevanova, 1989. Динaмикa чиcлeннocти и cтpyктypa плaнктoнныx кoлoвpaтoк oзepa Бaйкaл пo мнoгoлeтним дaнным (1946–1985 гг.) (Dynamics and structure of planktonic rotifers of Lake Baikal according to long-term data (1946–1985)). Proceeding of the III Rotifer Symposium: 89–92.

  • Pourriot, R. & P. Clement, 1981. Action de facteurs externes sur la reproduction et le cycle reproducteur de reitfè (External factors affecting reproduction and reproductive cycle of rotifers). Acta Ecologia: Ecologia Generalis 2: 135–151.

    Google Scholar 

  • Pourriot, R. & C. Rougier, 1997. Taux de reproduction en fonction de la concentration en nourriture et de la température chez trois espèces du genre Brachionus (Rotifères) (Reproduction rates in relation to food concentration and temperature in three species of the genus Brachionus (Rotifera)). Annales de Limnologie: International Journal of Limnology 33: 23–31.

    Article  Google Scholar 

  • R Core Team. 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.R-project.org/].

  • Richardson, T. L., C. E. Gibson & S. I. Heaney, 2000. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshwater Biology 44: 431–440.

    Article  Google Scholar 

  • Rigosi, A., P. Hanson, D. P. Hamilton, M. Hipsey, J. A. Rusak, J. Bois, K. Sparber, I. Chorus, A. J. Watkinson, B. Qin & others, 2015. Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecological Applications 25: 186–199.

  • Sarma, S. S. S., R. A. L. Resendiz & S. Nandini, 2011. Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia 662: 179–187.

    Article  Google Scholar 

  • Schabetsberger, R., M. S. Luger, G. Drozdowski & A. Jagsch, 2009. Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biological Invasions 11: 1335–1345.

    Article  Google Scholar 

  • Schmidt, S. N., M. J. Vander Zanden & J. F. Kitchell, 2009. Long-term food web change in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 66: 2118–2129.

    Article  Google Scholar 

  • Seifert, L. I., G. Weithoff, U. Gaedke & M. Vos, 2015. Warming-induced changes in predation, extinction and invasion in an ectotherm food web. Oecologia 178: 485–496.

    Article  PubMed  Google Scholar 

  • Shaw, R. G. & T. Mitchell-Olds, 1993. ANOVA for unbalanced data: an overview. Ecology 74: 1638–1645.

    Article  Google Scholar 

  • Shimaraev, M. N., L. N. Kuimova, V. N. Sinyukovich & V. V. Tsekhanovskii, 2002. Manifestation of global climate change in Lake Baikal during the 20th century. Doklady Earth Sciences 383A: 288–291.

    CAS  Google Scholar 

  • Silow, E. A., L. S. Krashchuk, K. A. Onuchin, H. V. Pislegina, O. O. Rusanovskaya & S. V. Shimaraeva, 2016. Some recent trends regarding Lake Baikal phytoplankton and zooplankton. Lakes and Reservoirs: Research and Management 21: 40–44.

    Article  Google Scholar 

  • Stemberger, R. S., 1985. Prey selection by the copepod Diacyclops thomasi. Oecologia 65: 492–497.

    Article  PubMed  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwater Biology 14: 639–647.

    Article  Google Scholar 

  • Tadonléké, R. D., J. Marty & D. Planas, 2012. Assessing factors underlying variation of CO2 emissions in boreal lakes vs. reservoirs. FEMS Microbiology Ecology 79: 282–297.

    Article  PubMed  Google Scholar 

  • Thackeray, S. J., T. H. Sparks, M. Frederiksen, S. Burthe, P. J. Bacon, J. R. Bell, M. S. Botham, T. M. Brereton, P. W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J. M. Elliott, R. Harrington, D. Johns, I. D. Jones, J. T. Jones, D. I. Leech, D. B. Roy, W. A. Scott, M. Smith, R. J. Smithers, I. J. Winfield & S. Wanless, 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments: phenological change across major environments. Global Change Biology 16: 3304–3313.

    Article  Google Scholar 

  • Williamson, C. E., 1980. The predatory behavior of Mesocyclops edax: predator preferences, prey defenses, and starvation-induced changes. Limnology and Oceanography 25: 903–909.

    Article  Google Scholar 

  • Zhang, H., M. K. Ekvall, J. Xu & L.-A. Hansson, 2015. Counteracting effects of recruitment and predation shape establishment of rotifer communities under climate change: counteracting effect and shape establishment. Limnology and Oceanography 60: 1577–1587.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the faculty, students, staff, and mariners of the Irkutsk State University’s Biological Research Institute Biostation for expert field and laboratory support, Marianne Moore, Bart De Stasio, and Eugene Silow for helpful advice; Dick Keefe for translation assistance; and Steve Powers, Stephanie Labou, and Steve Katz for diverse technical and statistical assistance. Funding was provided by the National Science Foundation (NSF-DEB-1136637) to S.E.H., a Fulbright Fellowship to M.F.M., and the Russian Ministry of Education and Science Research Project (No. GR 01201461929; 1354-2014/51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Meyer.

Additional information

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, M.F., Hampton, S.E., Ozersky, T. et al. Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia. Hydrobiologia 796, 309–318 (2017). https://doi.org/10.1007/s10750-016-3005-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3005-2

Keywords

Navigation