Skip to main content

Advertisement

Log in

Seasonal variability in the structure and functional diversity of psammic rotifer communities: role of environmental parameters

  • ROTIFERA XIV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Data on the variability in structure and functioning of interstitial rotifer assemblages are rare; however, this knowledge is essential for understanding their role in the interstitial food web. In the present study, we characterized psammic rotifer communities in terms of dominance structure, trophic traits, taxonomic and functional diversity at a seasonal scale in freshwater lakes across Estonia and coastal beaches of the Baltic Sea. A total of 42 rotifer species were found from the coastal beaches and 66 species from the lakes. Functional indices did not exhibit smaller seasonal variability and neither did they respond better to changes in the environment compared to taxonomic indices. However, there were differences how environmental variables affected these two broad groups of response variables. The taxonomy-based indices of rotifer communities were primarily driven by seasonal temperature regime, sediment characteristics and anthropogenic stressors, whereas the trait-based indices were a function of ecosystem types (freshwater or brackish water). The functional indices of the psammic rotifer communities strongly distinguished between freshwater and brackish habitats indicating that rotifers have different functional roles in food webs in fresh and brackish water environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584: 167–177.

    Article  Google Scholar 

  • Almroth-Rosell, E., A. Tengberg, S. Andersson, A. Apler & P. O. J. Hall, 2012. Effects of simulated natural and massive resuspension on benthic oxygen, nutrient and dissolved inorganic carbon fluxes in Loch Creran, Scotland. Journal of Sea Research 72: 38–48.

    Article  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth.

    Google Scholar 

  • Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255: 231–246.

    Article  Google Scholar 

  • Bērziņš, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.

    Article  Google Scholar 

  • Bielańska-Grajner, I., 2001. The psammic rotifer structure in three Lobelian Polish lakes differing in pH. Hydorobiologia 446(447): 149–153.

    Article  Google Scholar 

  • Bielańska-Grajner, I., 2005. The influence of biotic and abiotic factors on psammic rotifers in artificial and natural lakes. Hydrobiologia 546: 431–440.

    Article  Google Scholar 

  • Blott, S. J. & K. Pye, 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26: 1237–1248.

    Article  Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Science of the United States of America 81: 6427–6431.

    Article  CAS  Google Scholar 

  • Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.

    Article  Google Scholar 

  • Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.

    Article  Google Scholar 

  • Covazzi Harriague, A., C. Misic, I. Valentini, E. Polidori, G. Albertelli & A. Pusceddu, 2013. Meio- and macrofauna communities in three sandy beaches of the northern Adriatic Sea protected by artificial reefs. Chemistry and Ecology 29: 181–195.

    Article  CAS  Google Scholar 

  • Cowan, J. W., J. R. Pennock & W. R. Boynton, 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Marine Ecology Progress Series 141: 229–245.

    Article  Google Scholar 

  • De Smet, W. H., 1996. Rotifera 4: The Proalidae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 9. SPB Academic Publishing bv, Amsterdam.

    Google Scholar 

  • De Smet, W. H. & R. Pourriot, 1997. Vol. 5: Rotifera. The Dicranophoridae (Monogononta) and the Ituridae (Monogononta): Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 12. SPB Academic Publishing bv, Amsterdam.

    Google Scholar 

  • Ejsmont-Karabin, J., 2001. Psammon rotifers in two lakes of different trophy – their abundance, species structure and role in phosphorous cycling. Verhandlungen des Internationalen Verein Limnologie 27: 3856–3859.

    Google Scholar 

  • Ejsmont-Karabin, J., 2003. Rotifera of lake psammon: community structure versus trophic state of lake waters. Polish Journal of Ecology 51: 5–35.

    Google Scholar 

  • Ejsmont-Karabin, J., 2005. Short time-response of psammic communities of Rotifera to abiotic changes in their habitat. Hydorobiologia 546: 423–430.

    Article  Google Scholar 

  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J Mc C Overton, A. T. Peterson, S. J. Phillips, K. S. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberoń, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–881.

    Article  CAS  PubMed  Google Scholar 

  • Fenchel, T., 1969. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna commuities with special reference to the ciliated protozoa. Ophelia 6: 1–182.

    Article  Google Scholar 

  • Fontaneto, D., W. H. De Smet & C. Ricci, 2006. Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. Journal of the Marine Biological Association of the United Kingdom 86: 623–656.

    Article  Google Scholar 

  • Giere, O., 2009. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments, 2nd ed. Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Gingold, R., M. Mundo-Ocampo, O. Holovachov & A. Rocha-Olivares, 2010. The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Marine Biology 157: 1741–1753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, P. J., P. K. Bjørnsen & B. W. Hansen, 1997. Zooplankton grazing and growth: scaling within the 2–2000-μm body size range. Limnology and Oceanography 42: 687–704.

    Article  Google Scholar 

  • Hastie, T. J., R. J. Tibshirani & J. H. Friedman, 2001. The Elements of Statistical Learning. Springer-Verlag, New-York.

    Book  Google Scholar 

  • HELCOM, 2003. The Baltic marine environment 1999–2002. Baltic Sea Environment Proceedings 87: 46 pp.

  • Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2014. dismo: species distribution modeling. R package version 1.0-5. http://CRAN.R-project.org/package=dismo

  • Hillbricht-Ilkowska, A., 1983. Response of planktonic rotifers to the eutrophication process and to the autumnal shift of blooms in lake Biwa, Japan. I. Changes in abundance and composition of rotifers. Japanese Journal of Limnology 44: 93–106.

    Article  Google Scholar 

  • Ikauniece, A., 2001. Long-term abundance dynamics of coastal zooplankton in the Gulf of Riga. Environment International 26: 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, A.-M., 1967. The food-web of the Cladophora-belt fauna. Helgoländer wissenschaftliche Meeresuntersuchungen 15: 574–588.

    Article  Google Scholar 

  • Jersabek, C. D. & M. F. Leitner, 2013. The Rotifer World Catalog. World Wide Web electronic publication. http://www.rotifera.hausdernatur.at/

  • Jersabek, C. D., W. H. De Smet, C. Hinz, D. Fontaneto, C. G. Hussey, E. Michaloudi, R. L. Wallace & H. Segers, 2015. List of available names in zoology, candidate part Phylum Rotifera, species-group names established before 1 January 2000. (1) Completely defined names (A-list), and (2) incompletely defined names, with no types known (B-list): 335 pp. http://rotifera.hausdernatur.at/Rotifer_data/files/LAN_CandidatePart-SpeciesRotifera-2015-12-04.pdf. Accessed 27 June 2016.

  • Jordan, S., D. K. Shiozawa & J. M. Schmid-Araya, 1999. Benthic invertebrates of a large, sandy river system: the Green and Colorado Rivers of Canyonlands National Park, Utah. Archiv Fur Hydrobiologie 147: 91–127.

    Article  Google Scholar 

  • Koste, W. & R. J. Shiel, 1987. Rotifera from Australian inland waters. II. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invertebrate Taxonomy 7: 949–1021.

    Article  Google Scholar 

  • Kutikova, L. A., 1970. Rotifers (Rotatoria) of the Fauna of the USSR. Eurotatoria (Ploimida, Monimotrochida, Paedotrochida). Nauka, Leningrad. (in Russian).

    Google Scholar 

  • Laliberté, E., P. Legendre & B. Shipley, 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Lapesa, S., T. W. Snell, D. M. Fields & M. Serra, 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshwater Biology 47: 1685–1695.

    Article  Google Scholar 

  • Lepš, J., F. De Bello, S. Lavorel & S. Berman, 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501.

    Google Scholar 

  • Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.

    Article  CAS  Google Scholar 

  • Litchman, E., M. D. Ohman & T. Kiorboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.

    Article  Google Scholar 

  • Litton Jr., J. R., 1983. Collections on Planktonic and Interstitial Marine Rotifers from Puerto Rico. Proceedings of the Indiana Academy of Science 93: 475–478.

    Google Scholar 

  • Lokko, K. & T. Virro, 2014. The structure of psammic rotifer communities in two boreal lakes with different trophic conditions: Lake Võrtsjärv and Lake Saadjärv (Estonia). Oceanological and Hydrobiological Studies 43: 49–55.

    Article  CAS  Google Scholar 

  • Lokko, K., T. Virro & J. Kotta, 2014a. Taxonomic composition of zoopsammon in the fresh and brackish waters of Estonia, the Baltic province ecoregion of Europe. Estonian Journal of Ecology 63: 242–261.

    Article  Google Scholar 

  • Lokko, K., J. Kotta & T. Virro, 2014b. Seasonal trends in horizontal and vertical patterns of zoopsammon in the brackish Baltic Sea in relation to key environmental variables. Proceedings of the Biological Society of Washington 127: 58–77.

    Article  Google Scholar 

  • Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised andmed ja veevahetus (Morphometrical data and water exchange of larger Estonian lakes). Eesti NSV teaduste Akadeemia, Tallinn: 150 pp (in Estonian).

  • Mäemets, A., 1977. Eesti NSV järved ja nende kaitse (Lakes of the Estonian S.S.R. and their protection). Valgus, Tallinn: 264 pp (in Estonian).

  • Mallin, M. A. & H. W. Paerl, 1994. Planktonic trophic transfer in an estuary: seasonal, diel and community structure effects. Ecology 75: 2168–2184.

    Article  Google Scholar 

  • McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Article  Google Scholar 

  • Mouillot, D., 2007. Niche-assembly vs. dispersal-assembly rules in coastal fish metacommunities: implications for management of biodiversity in brackish lagoons. Journal of Applied Ecology 44: 760–767.

    Article  Google Scholar 

  • Muirhead, J. R., J. Ejsmont-Karabin & H. J. Macisaac, 2006. Quantifying rotifer species richness in temperate lakes. Freshwater Biology 51: 1696–1709.

    Article  Google Scholar 

  • Nogrady, T., R. L. Wallace & T. W. Snell, 1993. Rotifera. : Volume 1: Biology, Ecology and Systematics: Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 4. SPB Academic Publishing bv, The Hague.

    Google Scholar 

  • Nogrady, T., R. Pourriot & H. Segers, 1995. Rotifera. Vol. 3: The Notommatidae and the Scaridiidae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 8. SPB Academic Publishing bv, Amsterdam.

    Google Scholar 

  • Nordstrom, K. F. & N. L. Jackson, 2012. Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: a review. Earth-Science Reviews 111: 232–247.

    Article  Google Scholar 

  • Nordström, M. C., K. Aarnio, A. Törnroos & E. Bonsdorff, 2015. Nestedness of trophic links and biological traits in a marine food web. Ecosphere 6: 1–14.

    Article  Google Scholar 

  • Obertegger, U. & G. Flaim, 2015. Community assembly of rotifers based on morphological traits. Hydrobiologia 753: 31–45.

    Article  Google Scholar 

  • Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.

    Article  Google Scholar 

  • Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

    Article  Google Scholar 

  • Ott, I., T. Kõiv, P. Nõges, A. Kisand, A. Järvalt & E. Kirt, 2005. General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problems. Hydrobiologia 547: 1–20.

    Article  CAS  Google Scholar 

  • Ott, I. (ed.). 2007. Saadjärve limnoloogilised uurimused II [Limnological studies of Lake Saadjärv]. Eesti Maaülikooli Põllumajandus-ja Keskkonnainstituudi Limnoloogiakeskus (in Estonian).

  • Paturej, E. & A. Gutkowska, 2015. The effect of salinity levels on the structure of zooplankton communities. Archives of Biological Science Belgrade 67: 483–492.

    Article  Google Scholar 

  • Pejler, B., 1995. Relation to habitat in rotifers. Hydrobiologia 313(314): 267–278.

    Article  Google Scholar 

  • Pitkänen, H., M. Kiirikki, O. Savchuk, A. Räike, P. Korpinen & F. Wulff, 2007. Searching efficient protection strategies for the eutrophicated Gulf of Finland: the combined use of 1D and 3D modeling in assessing long-term state scenarios with high spatial resolution. Ambio 36: 272–279.

    Article  PubMed  Google Scholar 

  • Pitkänen, H., J. Lehtoranta & H. Peltonen, 2008. The Gulf of Finland. In Schiewer, U. (ed.), Ecology of Baltic Coastal Waters. Springer, Berlin: 285–308.

    Chapter  Google Scholar 

  • Pomerleau, C., A. R. Sastri & B. E. Beisner, 2015. Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. Journal of Plankton Research 37: 712–726.

    Article  Google Scholar 

  • R Core Team 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Radwan, S. & I. Bielańska-Grajner, 2001. Ecological structure of psammic rotifers in the ecotonal zone of Lake Piaseczno (eastern Poland). Hydrobiologia 446(447): 221–228.

    Article  Google Scholar 

  • Ridgeway, G., D. Edwards, B. Kriegler, S. Schroedl & H. Southworth, 2015. gbm: Generalized Boosted Regression Models. R package version 2.1.1. http://CRAN.R-project.org/package=gbm

  • Ristau, K., N. Spann & W. Traunspurger, 2015. Species and trait compositions of freshwater nematodes as indicative descriptors of lake eutrophication. Ecological Indicators 53: 196–205.

    Article  Google Scholar 

  • Rothhaupt, K. O., 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 35: 16–23.

    Article  Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of planktonic rotifers. Archiv für Hydrobiologie 8: 71–76.

    Google Scholar 

  • Salt, G. W., 1987. The components of feeding behavior in rotifers. Hydrobiologia 147: 271–281.

    Article  Google Scholar 

  • Saunders-Davies, A., 1998. Differences in rotifer populations of the littoral and sub-littoral pools of a large marine lagoon. Hydrobiologia 387(388): 225–230.

    Article  Google Scholar 

  • Schmid-Araya, J. M., 1998. Rotifers in interstitial sediments. Hydrobiologia 387(388): 231–240.

    Article  Google Scholar 

  • Segers, H., 1995. Rotifera. Vol. 2: The Lecanidae (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6. SPB Academic Publishing bv, The Hague.

    Google Scholar 

  • Segers, H., 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564: 1–104.

    Google Scholar 

  • Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.

    Article  Google Scholar 

  • Smith, H. A., J. Ejsmont-Karabin, T. M. Hess & R. L. Wallace, 2009. Paradox of planktonic rotifers: similar structure but unique trajectories in communities of the Great Masurian Lakes (Poland). Verhandlungen des Internationalen Verein Limnologie 30: 951–956.

    Google Scholar 

  • Špoljar, M., I. Habdija, B. Primc-Habdija & L. Sipos, 2005. Impact of environmental variables and food availability on rotifer assemblage in the karstic barrage Lake Visovac (Krka River, Croatia). International Review of Hydrobiology 90: 555–579.

    Article  Google Scholar 

  • Špoljar, M., T. Tomljanović & I. Lalić, 2011. Eutrophication impact on zooplankton community: a shallow lake approach. the Holistic Approach to. Environment 4: 131–142.

    Google Scholar 

  • Strayer, D. L., S. E. May, P. Nielsen, W. Wollheim & S. Hausam, 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Archiv für Hydrobiologie 140: 131–144.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada 167: 1–310.

    Google Scholar 

  • Thane-Fenchel, A., 1968. Distribution and ecology of non-planktonic brackish-water rotifers from Scandinavian waters. Ophelia 5: 273–297.

    Article  Google Scholar 

  • Tuvikene, L., A. Kisand, I. Tõnno & P. Nõges, 2004. Chemistry of lake water and bottom sediments. In Haberman, J., E. Pihu & A. Raukas (eds.), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 89–102.

    Google Scholar 

  • Virro, T., J. Haberman, M. Haldna & K. Blank, 2009. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquatic Ecology. 43: 755–764.

    Article  CAS  Google Scholar 

  • Wallace, R. L., 2002. Rotifers: exquisite metazoans. Integrative and Comparative Biology 42: 660–667.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by Institutional research funding IUT02-20 of the Estonian Research Council and the BONUS project BIO-C3, funded jointly from the European Union’s Seventh Programme for research, technological development and demonstration and from the Estonian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Külli Lokko.

Additional information

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokko, K., Virro, T. & Kotta, J. Seasonal variability in the structure and functional diversity of psammic rotifer communities: role of environmental parameters. Hydrobiologia 796, 287–307 (2017). https://doi.org/10.1007/s10750-016-2923-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2923-3

Keywords

Navigation