Skip to main content
Log in

A new, subalpine species of Daphnia (Cladocera, Anomopoda) in the D. carinata species complex, in the South Island, New Zealand

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Until recently, only one native and three apparently introduced Daphnia species were known from New Zealand. We demonstrate that (1) Daphnia in subalpine habitats in southern New Zealand differ morphologically and genetically from the native taxon previously labelled Daphnia carinata to merit species nova status and (2) the name of the latter should revert to D. thomsoni, used by Sars (1894) for Daphnia described from New Zealand mud. We compare some key characteristics and cytochrome c oxidase subunit 1 (CO1) sequences of the New Zealand native and other morphologically similar species. Distinctive characteristics of subalpine populations, described as Daphnia tewaipounamu sp. nov., are a wide cephalic shield with lateral flanges curving dorsally via rounded fornices, dorsal cervical depression variably expressed as a ‘step’ in the cephalic shield exuviae and retention of ephippia within shed carapace exoskeletons long after ecdysis. CO1 sequences revealed that D. tewaipounamu sp. nov. belongs to the D. carinata complex but is highly divergent (>14%) from other known members of this complex. New Zealand D. thomsoni is divergent (>15%) from D. carinata s.s. However, it is not endemic to New Zealand, as we confirmed its presence in Tasmania, and some Australian populations are closely related to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamowicz, S. J., A. Petrusek, J. K. Colbourne, P. D. N. Hebert & J. D. S. Witt, 2009. The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Molecular Genetics and Evolution 50: 423–436.

    Google Scholar 

  • Alonso, M., 1985. Daphnia (Ctenodaphnia) mediterranea: a new species of hypersaline waters, long confused with D. (C.) dolichocephala Sars, 1895. Hydrobiologia 128: 217–228.

    Article  Google Scholar 

  • Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp & D. L. Wheeler, 2000. GenBank. Nucleic Acids Research 28: 15–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzie, J. A. H., 1988. The systematics of Australian Daphnia (Cladocera: Daphniidae). Species descriptions and keys. Hydrobiologia 166: 95–161.

    Article  Google Scholar 

  • Benzie, J. A. H., 2005. Cladocera: the genus Daphnia (including Daphniopsis). In Dumont, H. J. F. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 21. Kenobi Productions, Ghent & Backhuys Publishers, Leiden.

  • Benzie, J. A. H. & A. M. A. Hodges, 1996. Daphnia obtusa Kurz, 1874 emend Scourfield, 1942 from Australia. Hydrobiologia 333: 195–199.

    Article  Google Scholar 

  • Brooks, J. L., 1957. The systematics of North American Daphnia. Memoirs of the Connecticut Academy of Arts and Sciences 13: 1–180.

    Google Scholar 

  • Burns, C. W., M. I. Butler & P. M. Cuttance, 1984. Invertebrates, macroalgae, and chemical features in morainic ponds near Lakes Tekapo and Ohau, including new distribution records of Crustacea. New Zealand Journal of Marine and Freshwater Research 18: 197–210.

    Article  Google Scholar 

  • Byrom, A. E., C. W. Burns & G. P. Wallis, 1993. Experimental hybridization of alpine and lowland forms of the calanoid copepod Boeckella dilatata. Heredity 71: 508–515.

    Article  Google Scholar 

  • Chapman, M. A. & M. H. Lewis, 1976. An introduction to the freshwater Crustacea of New Zealand. William Collins, Auckland.

    Google Scholar 

  • Claus, C., 1876. Zur Kenntnis der Organisation und des feiner Baues der Daphniiden und verwandten Cladoceren. Zeitschrift für wissenschaftliche Zoologie 27: 362–402.

    Google Scholar 

  • Colbourne, J. K., P. D. N. Hebert & A. D. Taylor, 1997. Evolutionary origins of phenotypic plasticity in Daphnia. In Givnish, T. J. & K. J. Sytsma (eds), Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge: 163–188.

    Google Scholar 

  • Colbourne, J. K., C. C. Wilson & P. D. N. Hebert, 2006. The systematics of Australian Daphnia and Daphniopsis (Crustacea: Cladocera): a shared phylogenetic history transformed by habitat-specific rates of evolution. Biological Journal of the Linnean Society 89: 469–488.

    Article  Google Scholar 

  • Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer & A. Wilson, 2010. Geneious v5.1, available from http://www.genious.com. http://dx.doi.org/10.1093/bioinformatics/bts199

  • Duggan, I. C., J. D. Green & D. F. Burger, 2006. First New Zealand records of three non-indigenous zooplankton species: Skistodiaptomus pallidus, Sinodiaptomus valkanovi and Daphnia dentifera. New Zealand Journal of Marine and Freshwater Research 40: 561–569.

    Article  Google Scholar 

  • Duggan, I. C., K. V. Robinson, C. W. Burns, J. C. Banks & I. D. Hogg, 2012. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia ‘pulex’ in New Zealand fresh waters. Aquatic Invasions 7: 585–590.

    Article  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Glagolev, S. M. & M. Alonso, 1990. Daphnia (Ctenodaphnia) hispanica sp. nov., a new daphnid from Spain. Hydrobiologia 194: 149–162.

    Article  Google Scholar 

  • Hebert, P. D. N., 1977. A revision of the taxonomy of the genus Daphnia (Crustacea: Daphnidae) in south-eastern Australia. Australian Journal of Zoology 25: 371–398.

    Article  Google Scholar 

  • Hebert, P. D. N., 1978. The population biology of Daphnia (Crustacea, Daphnidae). Biological Reviews 53: 387–426.

    Article  Google Scholar 

  • Hebert, P. D. N. & C. J. Emery, 1990. The adaptive significance of cuticular pigmentation in Daphnia. Functional Ecology 4: 703–710.

    Article  Google Scholar 

  • Hebert, P. D. N., E. A. Remigio, J. K. Colbourne, D. J. Taylor & C. C. Wilson, 2002. Accelerated molecular evolution in halophilic crustaceans. Evolution 56: 909–926.

    Article  CAS  PubMed  Google Scholar 

  • Herrick, C. L., 1895. Daphnia exilis sp. n.? Plate L II, Figs. 4, 5. Geological and Natural History Survey of Minnesota 2: 190.

    Google Scholar 

  • Johnson, D. S., 1952. The British species of the genus Daphnia (Crustacea, Cladocera). Proceedings of the Zoological Society of London 132: 435–462.

    Google Scholar 

  • Jolly, V. H. 1955. A review of the freshwater Cladocera of New Zealand. Thesis presented for the Degree of Master of Science. University of Otago, Dunedin.

  • Juračka, P. J., V. Kořínek & A. Petrusek, 2010. A new Central European species of the Daphnia curvirostris complex, Daphnia hrbaceki sp. nov. (Cladocera, Anomopoda, Daphniidae). Zootaxa 2718: 1–22.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • King, R. L., 1853a. On some species of Daphniadae found in New South Wales. Proceedings of the Royal Society of Van Diemen’s Land 2: 243–253.

    Google Scholar 

  • King, R. L., 1853b. On Australian Entomostracans – in continuation. Proceedings of the Royal Society of Van Diemen’s Land 2: 253–263.

    Google Scholar 

  • Kotov, A. A., 2015. A critical review of the current taxonomy of the genus Daphnia O. F. Müller, 1785 (Anomopoda, Cladocera). Zootaxa 3911(2): 184–200.

    Article  PubMed  Google Scholar 

  • Kotov, S. J., A. Y. Sinev & V. L. Berrios, 2010. The Cladocera (Crustacea: Branchiopoda) of six high altitude water bodies in the North Chilean Andes, with discussion of Andean endemism. Zootaxa 2430: 1–66.

    Google Scholar 

  • Kurz, W., 1874. Dodekas neuer Cladoceren nebst einer kurzen Übersicht der Cladocerenfauna Böhmens. Osterreichische Akademie der wissenschaften Mathematische-naturwissenschaftliche Klasse Sitzungsberichte 70: 1–88.

    Google Scholar 

  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson & D. G. Higgins, 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Maly, E. J. & I. A. E. Bayly, 1991. Factors influencing biogeographic patterns of Australasian centropagid copepods. Journal of Biogeography 18: 455–461.

    Article  Google Scholar 

  • Möst, M., A. Petrusek, R. Sommaruga, P. J. Juracka, M. Slusarczyk, M. Manca & P. Spaak, 2013. At the edge and on the top: molecular identification and ecology of Daphnia dentifera and D. longispina in high-altitude Asian lakes. Hydrobiologia 715: 51–62.

    Article  Google Scholar 

  • Paggi, J. C., 1996. Daphnia (Ctenodaphnia) menucoensis (Anomopoda; Daphniidae): a new species from athalassic saline waters in Argentina. Hydrobiologia 319: 137–147.

    Article  Google Scholar 

  • Paggi, J. C., 1999. Status and phylogenetic relationships of Daphnia sarsi Daday, 1902 (Crustacea: Anomopoda). Hydrobiologia 403: 27–37.

    Article  Google Scholar 

  • Penton, E. H., P. D. N. Hebert & T. J. Crease, 2004. Mitochondrial DNA variation in North American populations of Daphnia obtusa: continentalism or cryptic endemism? Molecular Ecology 13: 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Persaud, A. D., R. E. Moeller, C. E. Williamson & C. W. Burns, 2007. Photoprotective compounds in weakly and strongly pigmented calanoid copepods, cyclopoids, and co-occurring cladocerans. Freshwater Biology 52: 2121–2133.

    Article  CAS  Google Scholar 

  • Petkovski, T., 1973. Zur Cladoceren-Fauna Australiens. I Daphniidae und Chydoridae. Acta Musei Macedonici Scientiarum Naturalium 13: 133–157.

    Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sars, G. O., 1864. Inberetning om en i Sommeren 1862–1863 foretagen zoologisk Reise i Christianus og Trondhjems Stifter. Nyt Magazin for Naturvidenskaberne 12: 193–252.

    Google Scholar 

  • Sars, G. O., 1894. Contributions to the knowledge of the fresh-water Entomostraca of New Zealand as shown by artificial hatching from dried mud. Kongelige Danske Videnskabernes Selskabets Skrifter. I. Mathematisk-naturviden Klasse 5: 1–62.

    Google Scholar 

  • Sars, G. O., 1895. On some South African Entomostraca raised from dried mud. Kongelige Danske Videnskabernes Selskabets Skrifter. I. Mathematisk-naturviden Klasse 8: 1–56.

    Google Scholar 

  • Schallenberg, M. & C. W. Burns, 2003. A temperate, tidal lake-wetland complex 2. Water quality and implications for zooplankton community structure. New Zealand Journal of Marine and Freshwater Research 37: 429–447.

    Article  CAS  Google Scholar 

  • Stöver, B. & K. Müller, 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, G. M., 1884. On a new species of Daphnia. Proceedings of the New Zealand Institute 16: 240–241.

    Google Scholar 

  • Zuykova, E. I., N. A. Bochkarev & A. V. Katokhin, 2013. Identification of the Daphnia species (Crustacea: Cladocera) in the lakes of the Ob and Yenisi River basins: morphological and molecular phylogenetic approaches. Hydrobiologia 715: 135–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marc Schallenberg and Amanda Valois, Department of Zoology, University of Otago, for recent collections of Daphnia from some sites, Warrick Powrie for collection of the Tasmanian Daphnia, Graham Wallis and reviewers for helpful comments on the manuscript, and Adam Petrusek for helpful suggestions on the format of the final version. Ken Miller and Gemma Collins helped with illustrations, and Matt Knox assisted in the laboratory. Financial assistance was provided by the University of Otago and through New Zealand Ministry of Business Innovation and Employment projects UOWX0501 and UOWX0505. All morphological work was carried out by CWB who collected the subalpine Daphnia, suggested the name D. tewaipounamu sp. nov. and wrote these sections of the paper; JCB, ICD and IDH carried out the genetic analyses and wrote the genetics sections. All authors read and approved the whole manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn W. Burns.

Additional information

Guest editors: Adam Petrusek & Piet Spaak / Proceedings of the 10th International Symposium on Cladocera

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2016_2702_MOESM1_ESM.pdf

Online Resource (1) Bayesian majority rule consensus tree estimated from mitochondrial CO1 sequences for New Zealand and other Daphnia species estimated using MrBayes 3.2. Numbers above the nodes represent posterior probabilities greater than 95%. The analysis used a general time reversible model plus a proportion of invariant sites, plus a gamma distribution selected using the Akaike criterion in jModelTest. MrBayes estimated the model parameters from the data using one cold and three heated Markov chains. The Monte Carlo Markov chain length was 2,000,000 generations and we sampled the chain every 100 generations. We discarded the first 5000 samples as burnin and thus estimated our phylogeny and posterior probabilities from a consensus of the last 15,000 sampled trees. Supplementary material 1 (PDF 397 kb)

10750_2016_2702_MOESM2_ESM.pdf

Online Resource (2) Adult female Daphnia tewaipounamu sp. nov. from Ohau Pond. a, head, rostrum, antennule with aesthetes; scale bar is 0.1 mm. b, spinulation on tail spine, dorsal and ventral carapace margins; scale bar is 0.05 mm. c, postabdomen with anal teeth, claw pecten. Scale bar is 0.1 mm. d, claw pecten and tooth development on combs 1–3. Scale bar is 0.05 mm. Supplementary material 2 (PDF 6944 kb)

10750_2016_2702_MOESM3_ESM.pdf

Online Resource (3) Adult male Daphnia tewaipounamu sp. nov. from Ohau pond. Antennules, elongated exopodite setae on thoracic limb I, tail spine, cervical depression, lateral rib on carapace. Scale bar is 0.1 mm. Supplementary material 3 (PDF 2289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, C.W., Duggan, I.C., Banks, J.C. et al. A new, subalpine species of Daphnia (Cladocera, Anomopoda) in the D. carinata species complex, in the South Island, New Zealand. Hydrobiologia 798, 151–169 (2017). https://doi.org/10.1007/s10750-016-2702-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2702-1

Keywords

Navigation