Skip to main content
Log in

Temporal change in the distribution and composition of native, introduced, and hybrid charrs in northern Japan

  • CHARR II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Introductions of non-native species have caused various negative impacts on native species and their ecosystems. Hybridization is particularly prevalent among closely related species, and can result in displacement, hybrid swarms, or the disruption of a locally adapted gene complex. Although hybridization between native and non-native species is widespread, long-term monitoring is generally lacking. In this study, we compared the distribution and composition of native white-spotted charr (Salvelinus leucomaenis), introduced brook trout (Salvelinus fontinalis), and their hybrids in the upper Sorachi River, Hokkaido, Japan in 2003 and 2013, especially focusing on (1) if genetic introgression or hybrid swarm has occurred and (2) if white-spotted charr have declined, since a previous study indicated a potentially harmful asymmetric hybridization with the mothers of hybrids being all white-spotted charr. We found no evidence of decline in native white-spotted charr; rather, the distribution and abundance of introduced brook trout had decreased. Of 142 charr (i.e., genus Salvelinus) collected, 18 individuals (13%) were hybrids but no unidirectional hybridization was observed. However, most of the hybrids were post-F1 individuals with biased mating with white-spotted charr. The effects of long-term introgression on native white-spotted charr should be further examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters: identifying the major factors that threaten destruction of riverine species and ecosystems. Bioscience 43: 32–43.

    Article  Google Scholar 

  • Allendorf, F. W. & R. F. Leary, 1988. Conservation and distribution of genetic variation in a polytypic species: the cutthroat trout. Conservation Biology 2: 170–184.

    Article  Google Scholar 

  • Allendorf, F. W. & L. L. Lundquist, 2003. Introduction: population biology, evolution, and control of invasive species. Conservation Biology 17: 24–30.

    Article  Google Scholar 

  • Allendorf, F. W., R. F. Leary, P. Spruell & J. K. Wenburg, 2001. The problems with hybrids: setting conservation guidelines. Trends in Ecology and Evolution 16: 613–622.

    Article  Google Scholar 

  • Anderson, E. C. & E. A. Thompson, 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217–1229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumsteiger, J., D. Hankin & E. J. Loudenslager, 2005. Genetic analyses of juvenile steelhead, coastal cutthroat trout, and their hybrids differ substantially from field identifications. Transactions of the American Fisheries Society 134: 829–840.

    Article  Google Scholar 

  • Brunner, P. C., M. R. Douglas, A. Osinov, C. C. Wilson & L. Bernatchez, 2001. Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55: 573–586.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M. E. & K. A. Rose, 1997. Factors affecting competitive dominance of rainbow trout over brook trout in southern Appalachian streams: implications of an individual-based model. Transactions of the American Fisheries Society 126: 1–20.

    Article  Google Scholar 

  • DeHaan, P. W., L. T. Schwabe & W. R. Ardren, 2010. Spatial patterns of hybridization between bull trout, Salvelinus confluentus, and brook trout, Salvelinus fontinalis in an Oregon stream. Conservation Genetics 11: 935–949.

    Article  Google Scholar 

  • Epifanio, J. & D. Philipp, 2000. Simulating the extinction of parental lineages from introgressive hybridization: the effects of fitness, initial proportions of parental taxa, and mate choice. Reviews in Fish Biology and Fisheries 10: 339–354.

    Article  Google Scholar 

  • Gozlan, R. E., J. R. Britton, I. Cowx & G. H. Copp, 2010. Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology 76: 751–786.

    Article  Google Scholar 

  • Gunnell, K., M. K. Tada, F. A. Hawthorne, E. R. Keeley & M. B. Ptacek, 2008. Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and introduced rainbow trout (O. mykiss) in the South Fork of the Snake River watershed Idaho. Conservation Genetics 9: 49–64.

    Article  CAS  Google Scholar 

  • Hubbs, C. L., 1955. Hybridization between fish species in nature. The International Society for Systems Biology 4: 1–20.

    Google Scholar 

  • Kanda, N., R. F. Leary & F. W. Allendorf, 2002. Evidence of introgressive hybridization between bull trout and brook trout. Transactions of the American Fisheries Society 131: 772–782.

    Article  Google Scholar 

  • Kitano, S., 2004. Ecological impacts of rainbow, brown and brook trout in Japanese inland waters. Global Environmental Research 8: 41–50.

    Google Scholar 

  • Kitano, S., K. Maekawa, S. Nakano & K. D. Fausch, 1994. Spawning behavior of bull trout in the upper Flathead drainage, Montana, with special reference to hybridization with brook trout. Transactions of the American Fisheries Society 123: 988–992.

    Article  Google Scholar 

  • Kitano, S., S. Ohdachi, I. Koizumi & K. Hasegawa, 2014. Hybridization between native white-spotted charr and nonnative brook trout in the upper Sorachi River, Hokkaido, Japan. Ichthyological Research 61: 1–8.

    Article  Google Scholar 

  • Konishi, M. & K. Takata, 2004. Impact of asymmetric hybridization followed by sterile F1 hybrids on species replacement in Pseudorasbora. Conservation Genetics 5: 463–474.

    Article  CAS  Google Scholar 

  • Kozfkay, C. C., M. R. Campbell, S. P. Yundt, M. P. Peterson & M. S. Powell, 2007. Incidence of hybridization between naturally sympatric westslope cutthroat trout and rainbow trout in the Middle Fork Salmon River drainage, Idaho. Transactions of the American Fisheries Society 136: 624–638.

    Article  CAS  Google Scholar 

  • Leary, R. F., F. W. Allendorf & S. H. Forbes, 1993. Conservation genetics of bull trout in the Columbia and Klamath River drainages. Conservation Biology 7: 856–865.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & G. Sage, 1995. Hybridization and introgression between introduced and native fish. American Fisheries Society Symposium 15: 91–101.

    Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions, epidemiology, global consequences and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Morita, K., J. Tsuboi & H. Matsuda, 2004. The impact of exotic trout on native charr in a Japanese stream. Journal of Applied Ecology 41: 962–972.

    Article  Google Scholar 

  • Muhlfeld, C. C., S. T. Kalinowski, T. E. McMahon, M. L. Taper, S. Painter, R. F. Leary & F. W. Allendorf, 2009. Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters 5: 328–331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhlfeld, C. C., R. P. Kovach, L. A. Jones, R. Al-Chokhachy, M. C. Boyer, R. F. Leary, W. H. Lowe, G. Luikart & F. W. Allendorf, 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nature Climate Change 4: 620–624.

    Article  Google Scholar 

  • Nakabo, T. (ed.), 2000. Fishes of Japan with Pictorial Keys to the Species, 2nd ed. Tokai University Press, Tokyo.

    Google Scholar 

  • Peeler, E. J., B. C. Oidtmann, P. J. Midtlyng, L. Miossec & R. E. Gozlan, 2011. Non-native aquatic animals introductions have driven disease emergence in Europe. Biological Invasions 13: 1291–1303.

    Article  Google Scholar 

  • Pritchard, J. K., M. Stephens & P. J. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redenbach, Z. & E. B. Taylor, 2003. Evidence for bimodal hybrid zones between two species of char (Salvelinus) in northwestern North America. Journal of Evolutionary Biology 16: 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  • Rhymer, J. M. & D. Simberloff, 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27: 83–109.

    Article  Google Scholar 

  • Rubidge, E. & E. B. Taylor, 2004. Hybrid zone structure and the potential role of selection in hybridizing populations of native westslope cutthroat trout (Oncorhynchus clarki lewisi) and introduced rainbow trout (O. mykiss). Molecular Ecology 13: 3735–3749.

    Article  PubMed  Google Scholar 

  • Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius & I. Hanski, 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392: 491–494.

    Article  CAS  Google Scholar 

  • Scribner, K. T., K. S. Page & M. L. Bartron, 2001. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Reviews in Fish Biology and Fisheries 10: 293–323.

    Article  Google Scholar 

  • Suzuki, R., 1974. Intercrossing and backcrossing of F1 hybrids among salmonid fishes. Freshwater Fisheries Research Laboratory 340: 11–31.

    Google Scholar 

  • Taniguchi, Y. & S. Nakano, 2000. Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81: 2027–2039.

    Article  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, E. B., 2004. Evolution in mixed company: evolutionary inferences from studies of natural hybridization in Salmonidae. In Hendry, A. P. & S. Stearns (eds.), Evolution Illuminated. Salmon and their Relatives. Oxford University Press, Oxford: 232–263.

    Google Scholar 

  • Väha, J.-P. & C. R. Primmer, 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molecular Ecology 15: 63–72.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Wirtz, P., 1999. Mother species-father species: unidirectional hybridization in animals with female choice. Animal Behavior 58: 1–12.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the valuable comments of two anonymous reviewers on the earlier versions of this manuscript. We also thank to the staff of the Hokkaido Tokyo University Forest for field assistance. This study was supported in part by the Water Resources Environment Center, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsuro Koizumi.

Additional information

Guest editors: M. Power, R. Knudsen, C. Adams, M. J. Hansen, J. B. Dempson, M. Jobling & M. Ferguson / Advances in Charr Ecology and Evolution

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, S., May-McNally, S.L., Katahira, H. et al. Temporal change in the distribution and composition of native, introduced, and hybrid charrs in northern Japan. Hydrobiologia 783, 309–316 (2016). https://doi.org/10.1007/s10750-016-2688-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2688-8

Keywords

Navigation