Skip to main content

Advertisement

Log in

Geographic variation in mangrove flooding and accessibility for fishes and nektonic crustaceans

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Intertidal habitats are only available to most nekton when inundated by tides. We assessed the variability of access to mangrove habitats for aquatic organisms over 3500 km of Australia’s east coast. After determining the elevation of the lower mangrove edge across 19 locations, we used 6 years of historic hourly tide gauge readings to estimate wetland edge flooding frequency, duration, and depth at each location. Although mangrove edges broadly tracked mean sea level along the east coast, deviations in edge elevation corresponded to substantial geographic variation in flooding dynamics. Mangrove edges were flooded from as little as 20% of the time in central Queensland sites, to as much as 90% of the time during some seasons in northern New South Wales. Flooding frequency and depth were also highly variable, with some mangrove edges flooding and draining almost twice as frequently as others. Flooding depth profiles revealed dynamic patterns of flooding of mangrove habitat. The variability in flooding dynamics demonstrates that the availability of mangrove habitat to aquatic organisms varies significantly among locations. This variability in flooding patterns suggests the nature of mangrove use and the functional value of these habitats for fishes and nektonic crustaceans may differ substantially among regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrantes K. G., A. Barnett, T. R. Marwick & S. Bouillon, 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere 4(1): Article ID 14.

  • Australian Bureau of Statistics, 2012. Year Book Australia. ABS Catalogue No. 1301.0. Australian Bureau of Statistics Canberra, Canberra.

    Google Scholar 

  • Baker, R., B. Fry, L. P. Rozas & T. J. Minello, 2013. Hydrodynamic regulation of salt marsh contributions to aquatic food webs. Marine Ecology Progress Series 490: 37–52.

    Article  CAS  Google Scholar 

  • Ball, M. C., 1988. Ecophysiology of mangroves. Trees 2: 129–142.

    Article  Google Scholar 

  • Beck, M. W., K. L. Heck Jr, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. P. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641.

    Article  Google Scholar 

  • Chapman, V. J., 1960. Salt Marshes and Salt Deserts of the World. Interscience, New York.

    Google Scholar 

  • Chen, Y. P. & Y. Ye, 2013. Growth and physiological responses of saplings of two mangrove species to intertidal elevation. Marine Ecology Progress Series 482: 107–118.

    Article  Google Scholar 

  • Clarke, P. J., 2014. Seeking global generality: a critique for mangrove modellers. Marine and Freshwater Research 65: 930–933.

    Article  Google Scholar 

  • Colmer, T. D. & T. J. Flowers, 2008. Flooding tolerance in halophytes. New Phytologist 179: 964–974.

    Article  CAS  PubMed  Google Scholar 

  • Connolly, R. M., 1999. Saltmarsh as habitat for fish and nektonic crustaceans: challenges in sampling designs and methods. Australian Journal of Ecology 24: 422–430.

    Article  Google Scholar 

  • Crase, B., A. Kiedloff, P. A. Vesk, M. A. Burgman & B. Wintle, 2013. Hydroperiod is the main driver of spatial pattern of dominance in mangrove communities. Global Ecology and Biogeography 22: 806–817.

    Article  Google Scholar 

  • Curran, M., 1985. Gas movements in the roots of Avicennia marina (Forsk.) Vierh. Australian Journal of Plant Physiology 12: 97–108.

    Article  Google Scholar 

  • Duke, N. C., 2006. Australia’s Mangroves. The Authoritative Guide to Australia’s Mangrove Plants. University of Queensland, Brisbane.

    Google Scholar 

  • Ellis, W. L. & S. S. Bell, 2008. Tidal influence on a fringing mangrove intertidal fish community as observed by in situ video recording: implications for studies of tidally migrating nekton. Marine Ecology Progress Series 370: 207–219.

    Article  Google Scholar 

  • Ennis, B. & M. S. Peterson, 2014. Nekton and macro-crustacean habitat use of Mississippi micro-tidal salt marsh landscapes. Estuaries and Coasts. doi:10.1007/s12237-014-9912-4.

  • Ennis, B., M. S. Peterson & T. P. Strange, 2014. Modeling of inundation characteristics of a microtidal saltmarsh, Grand Bay National Estuarine Research Reserve, Mississippi. Journal of Coastal Research 30: 635–646.

    Article  Google Scholar 

  • Faunce, C. H. & C. A. Layman, 2009. Sources of variation that affect perceived nursery function of mangroves, Ch. 11. In Nagelkerken, I. (ed.), Ecological Connectivity among Tropical Coastal Ecosystems. Springer, Dordrecht.

    Google Scholar 

  • Faunce, C. H. & J. E. Serafy, 2006. Mangroves as fish habitat: 50 years of field studies. Marine Ecology Progress Series 318: 1–18.

    Article  Google Scholar 

  • Feller, I. C., C. E. Lovelock, U. Berger, K. L. McKee, S. B. Joye & M. C. Ball, 2010. Biocomplexity in mangrove ecosystems. Annual Review of Marine Science 2: 395–417.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, R. N., 2003. Go with the flow: tidal migration in marine animals. Hydrobiologia 503: 153–161.

    Article  Google Scholar 

  • Hammerschlag, N., M. Heithaus & J. Serafy, 2010. Influence of predation risk and food supply on nocturnal fish foraging distributions along a mangrove-seagrass ecotone. Marine Ecology Progress Series 414: 223–235.

    Article  Google Scholar 

  • ICSM, 2011. Australian Tides Manual, Version 4.1. Intergovernmental Committee on Surveying and Mapping Permanent Committee on Tides and Mean Sea Level. Commonwealth of Australia.

  • Igulu, M. M., I. Nagelkerken, M. Dorenbosch, M. G. G. Grol, A. R. Harborne, I. A. Kimirei, P. J. Mumby, A. D. Olds & Y. D. Mgaya, 2014. Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region. PLoS One 9(12): e114715.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kneib, R. T., 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer, Dordrecht.

    Google Scholar 

  • Kneib, R. T. & S. L. Wanger, 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 106: 227–238.

    Article  Google Scholar 

  • Krauss, K. W., C. E. Lovelock, K. L. McKee, L. Lopez-Hoffman, S. M. L. Ewe & W. P. Sousa, 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105–127.

    Article  Google Scholar 

  • Lewis, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24: 403–418.

    Article  Google Scholar 

  • Lewis, R. R., 2009. Methods and criteria for successful mangrove forest restoration, Ch. 28. In Perillo, G. M. E., E. Wolanski, D. R. Cahoon & M. M. Brinson (eds), Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Amsterdam.

    Google Scholar 

  • Lugendo, B. R., I. Nagelkerken, G. Kruitwagen, G. van der Velde & Y. D. Mgaya, 2007. Relative importance of mangroves as feeding habitats for fishes: a comparison between mangrove habitats with different settings. Bulletin of Marine Science 80: 497–512.

    Google Scholar 

  • Meynecke, J. O., G. C. Poole, J. Werry & S. Y. Lee, 2008. Use of PIT tag and underwater video recording in assessing estuarine fish movement in a high intertidal mangrove and salt marsh creek. Estuarine Coastal and Shelf Science 79: 168–178.

    Article  Google Scholar 

  • Minello, T. J., K. W. Able, M. P. Weinstein & C. G. Hays, 2003. Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Marine Ecology Progress Series 246: 39–59.

    Article  Google Scholar 

  • Minello, T. J., L. P. Rozas & R. Baker, 2012. Geographic variability in salt marsh flooding patterns may affect nursery value for fishery species. Estuaries and Coasts 35: 501–514.

    Article  CAS  Google Scholar 

  • Nagelkerken, I., S. J. M. Blaber, S. Bouillon, P. Green, M. Haywood, L. G. Kirton, J. O. Meynecke, J. Pawlick, H. M. Penrose, A. Sasekumar & P. J. Somerfield, 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany 89: 155–185.

    Article  Google Scholar 

  • Rountree, R. A. & K. W. Able, 2007. Spatial and temporal habitat use patterns for salt marsh nekton: implications for ecological functions. Aquatic Ecology 41: 25–45.

    Article  CAS  Google Scholar 

  • Rozas, L. P., 1995. Hydroperiod and its influence on nekton use of the salt marsh: a pulsing ecosystem. Estuaries 18: 579–590.

    Article  Google Scholar 

  • Rozas, L. P. & M. W. LaSalle, 1990. A comparison of the diets of Gulf killifish, Fundulus grandis Baird and Girard, entering and leaving a Mississippi brackish marsh. Estuaries 13: 332–336.

    Article  Google Scholar 

  • Rozas, L. P. & R. J. Zimmerman, 2000. Small-scale patterns of nekton use among marsh and adjacent shallow nonvegetated areas of the Galveston Bay Estuary, Texas (USA). Marine Ecology Progress Series 193: 217–239.

    Article  Google Scholar 

  • Sasekumar, A., V. C. Chong, M. U. Leh & R. D’Cruz, 1992. Mangroves as a habitat for fish and prawns. Hydrobiologia 247: 195–207.

    Article  Google Scholar 

  • Schmitt, K., T. Albers, T. T. Pham & S. C. Dinh, 2013. Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. Journal of Coastal Conservation 17: 545–558.

    Article  Google Scholar 

  • Sheaves, M., 2005. Nature and consequences of biological connectivity in mangrove systems. Marine Ecology Progress Series 302: 293–305.

    Article  Google Scholar 

  • Sheaves, M., 2012. Ecosystem equivalence and the ability to generalise: insights from global consistencies in mangrove fish assemblages. Marine Ecology Progress Series 461: 137–149.

    Article  Google Scholar 

  • Sheaves, M., R. Baker, I. Nagelkerken & R. M. Connolly, 2015. True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuaries and Coasts 38: 401–414.

    Article  Google Scholar 

  • Sheridan, P. & C. Hays, 2003. Are mangroves nursery habitat for transient fishes and decapods. Wetlands 23: 449–458.

    Article  Google Scholar 

  • Staunton-Smith, J., J. B. Robins, D. G. Mayer, M. J. Sellin & I. A. Halliday, 2004. Does the quantity and timing of fresh water flowing into a dry tropical estuary affect year-class strength of barramundi (Lates calcarifer)? Marine and freshwater Research 55: 787–797.

    Article  Google Scholar 

  • Turner, R. E. & R. R. Lewis, 1997. Hydrologic restoration of coastal wetlands. Wetlands Ecology and Management 4: 65–72.

    Article  Google Scholar 

  • Ungar, I. A., 1991. Ecophysiology of vascular halophytes. CRC Press, Boca Raton.

    Google Scholar 

  • Weinstein, M. P., S. Y. Litvin & J. M. Krebs, 2014. Restoration ecology: ecological fidelity, restoration metrics, and a systems perspective. Ecological Engineering 65: 71–87.

    Article  Google Scholar 

  • Youssef, T. & P. Saenger, 1998. Photosynthetic gas exchange and accumulation of pyhtotoxins in mangrove seedlings in response to soil physico-chemical characteristics associated with waterlogging. Tree Physiology 18: 317–324.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tom Minello and Lawrence Rozas for inspiring this work. This project arose during discussions between RB, MS, TM, and LR, during a visit to NOAA Fisheries by MS funded through an Australian Academy of Sciences Travel Fellowship. Tide gauge data for sites from Gladstone north were provided by Maritime Safety Queensland; for Brisbane by Port of Brisbane Pty Ltd; for all sites in New South Wales (Tweed Heads to Eden), data are owned by the Department of Environment, Climate change and Water, and collected and provided by Manly Hydraulics Laboratory, Department of Services, Technology and Administration, Manly Vale NSW; for Port Welshpool (Corner Inlet) by Gippsland Ports, and for Stony Point (Westernport Bay) by the National Tide Centre. RB is partially supported by a post-doctoral fellowship from the Tropical Landscapes Joint Venture between James Cook University and the Commonwealth Scientific and Industrial Research Organisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Baker.

Additional information

Handling editor: K.W. Krauss

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, R., Sheaves, M. & Johnston, R. Geographic variation in mangrove flooding and accessibility for fishes and nektonic crustaceans. Hydrobiologia 762, 1–14 (2015). https://doi.org/10.1007/s10750-015-2329-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2329-7

Keywords

Navigation