Skip to main content

Advertisement

Log in

The phytoplankton community of tropical high-mountain crater lake Wonchi, Ethiopia

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Atelomixis influences phytoplankton composition in regions where day–night temperature variations are high. Although this physical process is shown as the most important driver in a number of tropical–subtropical lake systems, information on tropical high-mountain lakes is largely lacking. We therefore studied the phytoplankton community composition and the underlying limnological variables of the atelomictic tropical high-mountain Lake Wonchi (Ethiopia) for 13 months. Nutrient levels indicated oligotrophic conditions with ammonium being the primary nitrogen form. The phytoplankton community comprised 53 taxa distributed in five taxonomic divisions, which could be assigned to 15 codas based on phytoplankton functional group classification. Partial atelomixis and low nutrient concentrations seemed to be key variables in structuring phytoplankton community composition, which was quite stable and characterized by high diversity of heavy, immobile and fast-sinking planktonic desmids of the N A codon during mixing followed by diatoms (MP codon). A near-monospecific bloom of Peridinium cinctum (Lo codon) prevailed before the onset of lake turnover in December 2011 with conditions of nutrient depletion, which was later followed by the functional groups FJ during the episode of complete mixing and then replaced by the N A codon. Non-metric multidimensional scaling resulted in a 2-dimensional solution, which revealed clear segregation of phytoplankton community to five groups. Mixing regime of the water column, conductivity, total phosphorus, ammonium and zooplankton had significant influence on the observed seasonal pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington DC.

    Google Scholar 

  • Ayenew, T., 2005. Major ions composition of the groundwater and surface water systems and their geological and geochemical controls in the Ethiopian volcanic terrain. SINET: Ethiopian Journal of Science 28: 171–188.

    Google Scholar 

  • Barbosa, F. A. R. & J. Padisák, 2002. The forgotten lake stratification pattern: atelomixis. Verhandlungen des Internationalen Verein Limnologie 28: 1385–1395.

    CAS  Google Scholar 

  • Barbosa, L. G., F. A. R. Barbosa, J. M. G. Araujo & C. E. de M. Bicudo, 2013. The dominance of desmids in tropical monomictic lakes (SE Brazil). Limnetica 32: 71–86.

    Google Scholar 

  • Becker, V., L. Caputo, J. Ordonez, R. Marce, J. Armengol, L. O. Crossetti & V. L. M. Huszar, 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research 44: 3345–3354.

    Article  CAS  PubMed  Google Scholar 

  • Boehere, B. & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46: 11–23.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Burgis, M. J., 1971. The ecology and production of copepods, particularly Thermocyclopes hyalinus, in the tropical Lake George, Uganda. Freshwater Biology 1: 169–192.

    Article  Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    Article  CAS  Google Scholar 

  • Carmouze, J. P., J. R. Durand & C. Leveque, 1983. Ecology and productivity of a shallow tropical ecosystem. In Monographiae Biologicae. Dr W Junk Publishers, The Hague: 575pp.

  • Clarke, R. J. & R. N. Gorley, 2006. Primer V6: user manual/tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Dagne, A., A. Herzig, C. Jersabek & Z. Tadesse, 2008. Abundance, species composition and spatial distribution of planktonic rotifers and crustaceans in Lake Ziway (Rift Valley, Ethiopia). International Review of Hydrobiology 93: 210–226.

    Article  Google Scholar 

  • Darchambeau, F., M. Isumbisho & J. P. Descy, 2012. Zooplankton of Lake Kivu. In Descy, J. P., F. Darchambeau & M. Schmid (eds), Limnology and Geochemistry of a Tropical Great Lake, Lake Kivu. Springer, Dordrecht: 107–126.

    Google Scholar 

  • Degefu, F. & M. Schagerl, 2015. Zooplankton abundance, species composition and ecology of tropical high-mountain crater Lake Wonchi, Ethiopia. Journal of Limnology 74: 304–314.

    Google Scholar 

  • Degefu, F., A. Herzig, F. Jirsa & M. Schagerl, 2014. A limnological snapshot of three, highly threatened tropical high-mountain crater lakes in Ethiopia. Tropical Conservation Science 7: 366–382.

    Google Scholar 

  • De Iongh, H. H., P. C. Spliethoff & F. Roest, 1995. The impact of an introduction of sardine into Lake Kivu. In Pitcher, T. J. & P. J. B. Hart (eds), The Impact of Species Change in African Lakes. Fish and Fisheries Series. Chapman and Hall, London: 277–297.

    Chapter  Google Scholar 

  • Descy, J. P., M. A. Hardy, S. Stenuite, S. Pirlot, B. Leporcq, I. Kimirei, B. Sekadende, S. Mwaitega & D. Sinyenza, 2005. Phytoplankton pigments and community composition in Lake Tanganyika. Freshwater Biology 50: 668–684.

    Article  CAS  Google Scholar 

  • Descy, J. P., A. L. Tarbe, S. Stenuite, S. Pirlot, J. Stimart, J. Vanderheyden, B. Leporcq, M. P. Stoyneva, I. Kimirei, D. Sinyinza & P. D. Plisnier, 2010. Drivers of phytoplankton diversity in Lake Tanganyika. Hydrobiologia 653: 29–44.

    Article  CAS  Google Scholar 

  • Descy, J. P., F. Darchambeau & M. Schmid, 2012. Lake Kivu research: conclusions and perspectives. In Descy, J. P., F. Darchambeau & M. Schmid (eds), Limnology and Geochemistry of a Tropical Great Lake, Lake Kivu. Springer, Dordrecht: 181–190.

    Google Scholar 

  • Eggermont, H. & M. J. Russell, 2007. Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains, Uganda-DR Congo. Hydrobiologia 592: 151–173.

    Article  CAS  Google Scholar 

  • Fetahi, T., S. Mengistu & M. Schagerl, 2011. Zooplankton community structure and ecology of the tropical-highland Lake Hayq, Ethiopia. Limnologica 41: 389–397.

    Article  Google Scholar 

  • Fetahi, T., M. Schagerl & S. Mengistu, 2014. Key drivers for phytoplankton composition and biomass in an Ethiopian highland lake. Limnologica 46: 77–83.

    Article  CAS  Google Scholar 

  • Figueredo, C. C. & A. Giani, 2009. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favouring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica 39: 264–272.

    Article  Google Scholar 

  • Ganf, G. G., 1974. Phytoplankton biomass and distribution in a shallow, equatorial lake (Lake George, Uganda). Oecologia 16: 9–24.

    Article  Google Scholar 

  • Gerrath, J. F., 2003. Conjugating green algae and desmids. In Wehr, J.D. & R. G. Sheath (eds), Freshwater algae of North America: Ecology and Classification. Academic Press, New York: 918 pp.

  • Gunkel, G. & J. Casallas, 2002. Limnology of an equatorial high mountain lake—Lago San Pablo, Ecuador: the significance of deep diurnal mixing for lake productivity. Limnologica 32: 33–43.

    Article  Google Scholar 

  • Hecky, R. E. & H. J. Kling, 1981. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass chlorophyll content, and spatio-temporal distribution. Limnology and Oceanography 26: 548–564.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology: Introduction to Lake Biology and Limnoplankton. Wiley, New York.

    Google Scholar 

  • Irvine, K. & R. Waya, 1999. Spatial and temporal patterns of zooplankton standing biomass and production in Lake Malawi. Hydrobiologia 407: 191–205.

    Article  Google Scholar 

  • Isumbisho, M., H. Sarmento, B. Kaningini, J. C. Micha & J. P. Descy, 2006. Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction. Journal of Plankton Research 28: 971–989.

    Article  Google Scholar 

  • Jeppesen, E., T. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 343: 151–164.

    Article  Google Scholar 

  • Kebede, E. & A. Belay, 1994. Species composition and phytoplankton biomass in a tropical African lake (Lake Awasa, Ethiopia). Hydrobiologia 288: 13–32.

    Article  CAS  Google Scholar 

  • Kjensmo, J., 1967. The development and some main features of iron meromictic soft water lakes. Archiv für Hydrobiologie 32: 137–312.

    Google Scholar 

  • Kling, G. W., 1988. Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnology and Oceanography 33: 27–40.

    Article  CAS  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Freshwater Flora of Central Europe: Cyanoprokaryota 19/2. Elsevier GmbH, München: 759.

    Google Scholar 

  • Krom, M. D., 1982. Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105: 305–316.

    Article  Google Scholar 

  • Lewis, Jr., W. M., 1973. The thermal regime of Lake Lanao (Philippines) and its theoretical implications for Tropical Lakes. Limnology and Oceanography 18: 200–217.

    Article  Google Scholar 

  • Lewis, Jr., W. M., 1996. Tropical lakes: how latitude makes a difference. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing, Amsterdam.

    Google Scholar 

  • Löffler, H., 1972. Contribution to the limnology of high mountain lakes in Central America. International Review of Hydrobiology 57: 397–408.

    Article  Google Scholar 

  • Martínez-Almeida, V. & R. Tavera, 2005. A hydrobiological study to interpret the presence of desmids in Lake Zirahuén, México. Limnologica 35: 61–69.

    Article  Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic eco-systems. Journal of Fisheries and Aquatic Science 43: 1571–1581.

    Article  Google Scholar 

  • Mengestou, S., J. Green & C. H. Fernando, 1991. Species composition, distribution and seasonal dynamics of Rotifera in a Rift Valley lake in Ethiopia (Lake Awasa). Hydrobiologia 209: 203–214.

    Article  Google Scholar 

  • Oda, A. C. R. & C. E. M. Bicudo, 2006. Ecology of Peridinium gatunense and Peridinium umbonatum (Dinophyceae) in a shallow, tropical, oligotrophic reservoir (IAG pond), Sao Paulo, southeast Brazil. Acta Limnologica Brasiliensis 18: 165–180.

    Google Scholar 

  • Oduor, S. O. & M. Schagerl, 2007. Temporal trends of ion contents and nutrients in three Kenyan Rift Valley saline-alkaline lakes and their influence on phytoplankton biomass. Hydrobiologia 584: 59–68.

    Article  CAS  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

  • Popovský, J. & L. A. Pfiester, 1990. Freshwater Flora of Central Europe: Dinophyceae (Dinoflagellida). Gustav Fischer Verlag, Stuttgart: 272 pp.

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation process in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.), Excellence in Ecology. ECI, Oldendorf.

    Google Scholar 

  • Reynolds, C., 2006. Ecology of phytoplankton. Cambridge University Press, Cambridge: 535–539.

    Book  Google Scholar 

  • Reynolds, C. S., V. L. Huszar, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428. 

  • Sánchez, M., 2011. Variaction de la clorofila ‘a’ fitoplanctónica y sus mecanismos de control en un lago atalasohalino tropical. Tesis de Maestría en Ciencias del Mar y Limnología. Instituto de Ciencias del Mar y Limnología, UNAM, Mexico: 66 pp.

  • Sarvala, J., K. Salonen, M. Järvinen, E. Aro, T. Huttula, P. Kotilainen, H. Kurki, V. Langenberg, P. Mannini, A. Peltonen, P. D. Plisnier, I. Vuorinen, H. Mölsä & O. V. Lindqvist, 1999. Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407: 140–173.

    Article  Google Scholar 

  • Schabetsberger, R., G. Drozdowski, I. Drozdowski, D. C. Jersabek & E. Rott, 2004. Limnological aspects of two tropical Crater lakes (Lago Bio and Lago Loreto) on the island of Bioko, Equatorial Guinea. Hydrobiologia 524: 79–90.

    Article  Google Scholar 

  • Sharma, M. C., S. Sharma, M. R. Bajracharya, S. Gurung, I. Jüttner, S. Kang, Q. Zhang & Q. Li, 2012. First results on bathymetry and limnology of high-altitude lakes in the Gokyo Valley, Sagarmatha (Everest) National park, Nepal. Limnology 13: 181–192.

    Article  Google Scholar 

  • Shurin, J. B., D. S. Gruner, & H. Hillebrand, 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. In Proceedings of the Royal Society: 1–9.

  • Sommer, U., 1985. Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.

    Article  CAS  Google Scholar 

  • Sondergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200: 229–240.

    Article  Google Scholar 

  • Souza, M. B., F. A. Barros, F. Barbosa, E. Hajnal & J. Pádisak, 2008. Role of atelomixis in replacement of phytoplankton assemblages in Dom Helvécio Lake, South-East Brazil. Hydrobiologia 607: 211–224.

    Article  CAS  Google Scholar 

  • Strickland, J. D., 1965. Phytoplankton and marine primary production. Annual Review of Microbiology 19: 127–162.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area of phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Tadesse, Z., 1999. The nutritional status and digestibility of Oreochromis niloticus L. diet in Lake Langano, Ethiopia. Hydrobiologia 417: 97–106.

    Article  Google Scholar 

  • Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. In Proceedings of a Conference on Primary Productivity Measurements, Marine and Freshwater, US Atomic Energy Commission, TID 7633: 142–146.

  • Talling, J. F. & J. Lemoalle, 1998. Ecological Dynamics of Tropical Inland Waters. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tavera, R. & V. Martinez-Almeida, 2005. Atelomixis as a possible driving force in the phytoplankton composition of Zirahuén, a warm-monomictic tropical lake. Hydrobiologia 533: 199–208.

    Article  Google Scholar 

  • Tilahun, G. & G. Ahlgren, 2010. Seasonal variations in phytoplankton biomass and primary production in the Ethiopian Rift Valley lakes Ziway, Awasa and Chamo – the basis of fish production. Limnologica 40: 330–342.

    Article  CAS  Google Scholar 

  • Vijverberg, J., E. Dejen, A. Getahun & L. A. J. Nagelkerke, 2014. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiologia 722: 45–60.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1975. Limnology. WB Saunders, Philadelphia.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd ed. Saunders College Publishing, Philadelphia.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.

    Book  Google Scholar 

  • Willen, E., 1991. A simplified method of phytoplankton counting. British phycological Journal 11: 265–278.

    Article  Google Scholar 

  • Whitford, L. A. & G. J. Schumacher, 1973. A Manual of Freshwater Algae. Sparks Press, Raleigh, NC: 324 pp.

  • WHO, 2006. Fluoride in Drinking–Water. A Series of World Health Organization Monographs. IWA Publishing, Geneva.

    Google Scholar 

  • Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.

    Article  CAS  Google Scholar 

  • Wood, R. B., M. V. Prosser & R. M. Baxter, 1978. Optical characteristics of the Rift Valley Lakes of Ethiopia. SINET: Ethiopian Journal of Science 1: 73–85.

    Google Scholar 

Download references

Acknowledgments

We appreciate the financial support of the Austrian Partnership Program in Higher Education and Research for Development (APPEAR). We also thank EIAR-National Fisheries and Aquaculture Research Center (NFLARC) for logistic support during this study. Special thanks to K. Teshome, S. Abere and B. Jemal, who assisted during sample collection and laboratory analysis. H. Kraill kindly analysed major ions. We also thank L. Krienitz and P. Cousel for identification help. We are grateful to Mr. Betru for handling the field equipment and sampling boat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fasil Degefu.

Additional information

Handling editor: Judit Padisak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degefu, F., Schagerl, M. The phytoplankton community of tropical high-mountain crater lake Wonchi, Ethiopia. Hydrobiologia 755, 197–208 (2015). https://doi.org/10.1007/s10750-015-2233-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2233-1

Keywords

Navigation