Skip to main content

Advertisement

Log in

Do increased temperature and CO2 levels affect the growth, photosynthesis, and respiration of the marine macroalga Pyropia haitanensis (Rhodophyta)? An experimental study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The marine red macroalgae Pyropia haitanensis (Rhodophyta) were cultured at 18 and 22°C, and at 390 and 1,000 ppm CO2, to examine the potential influence of global change on this commercially important species. The results showed that elevated CO2 or temperature hardly affected the relative growth rate. However, the maximal photochemical yield (F v/F m) was increased by elevated CO2 or temperature. The light-saturated maximum photosynthetic rates significantly increased with the increasing growth temperature, but decreased dramatically with elevated CO2. While the increasing growth temperature enhanced the dark respiration (R d), elevated CO2 had no significant effect on it. An increase of growth temperature lowered the temperature sensitivities (i.e., the Q 10 values) of both gross photosynthesis (P g) and respiration, whereas elevated CO2 did not significantly affect the Q 10 values for these two metabolic processes. Algae grown at 22°C exhibited higher ratio of R d to P g than 18°C-grown algae. By contrast, CO2-enriched growth conditions exerted no significant effect on the ratio. The results suggested that elevated temperature exerted a greater pronounced effect on carbon metabolism than elevated CO2 did. We proposed that the growth of P. haitanensis would not be stimulated by the ongoing climate change (increasing atmospheric CO2 and global warming).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkin, O. K. & M. G. Tjoelker, 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8: 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Azcόn-Bieto, J., M. González-Meler, W. Dougherty & B. Drake, 1994. Acclimation of respiratory O2 uptake in green tissues of field-grown native species after long-term exposure to elevated atmospheric CO2. Plant Physiology 106: 1163–1168.

    Google Scholar 

  • Beardall, J., S. Beer & J. A. Raven, 1998. Biodiversity of marine plants in an era of climate change: some predictions on the basis of physiological performance. Botanica Marina 41: 113–123.

    Article  CAS  Google Scholar 

  • Beer, S., & A. Eshel, 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Marine and Freshwater Research 36: 785–792.

  • Behrenfeld, M. J., O. Prasil, M. Babin & F. Bruyant, 2004. In search of a physiological basis for co variations in light-limited and light-saturated photosynthesis. Journal of Phycology 40: 4–25.

    Article  CAS  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brierley, A. S. & M. J. Kingsford, 2009. Impacts of climate change on marine organisms and ecosystems. Current Biology 19: 602–614.

    Article  Google Scholar 

  • Cai, W. J., X. Hu, W. J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W. C. Chou, W. Zhai, J. T. Hollibaugh & T. Wang, 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770.

    Article  CAS  Google Scholar 

  • Christensen, J. H., B. Hewitson, & A. Busuioc, et al., 2007. Regional climate projections. In Solomon, S., D. Tignor, H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 847–940.

  • Davison, I. R., 1991. Environmental effects on algal photosynthesis: temperature. Journal of Phycology 27: 2–8.

    Article  Google Scholar 

  • Davison, I. R. & G. A. Pearson, 1996. Stress tolerance in intertidal seaweeds. Journal of Phycology 32: 197–211.

    Article  Google Scholar 

  • Fu, F. X., M. E. Warner, Y. H. Zhang, Y. Y. Feng & D. A. Hutchins, 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43: 485–496.

    Article  Google Scholar 

  • Fu, F. X., Y. H. Zhang, M. E. Warner, Y. Y. Feng, J. Sun & D. A. Hutchins, 2008. A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae 7: 76–90.

    Article  CAS  Google Scholar 

  • Garcìa-Sánchez, M. J., J. A. Fernández & F. X. Niell, 1994. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194: 55–61.

    Article  Google Scholar 

  • Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T. L. Frölicher & G. K. Plattner, 2012. Rapid progression of ocean acidification in the California current system. Science 337: 220–223.

    Article  CAS  PubMed  Google Scholar 

  • Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, et al., 2008. A global map of human impact on marine ecosystems. Science 319: 948–952.

    Article  CAS  PubMed  Google Scholar 

  • Henkel, S. K., & G. E. Hofmann, 2008. Differing patterns of hsp70 gene expression in invasive and native kelp species: evidence for acclimation-induced variation. Journal of Applied Phycology 20: 915-924.

  • Hikosaka, K., K. Ishikawa, A. Borjigidai, O. Muller & Y. Onoda, 2006. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany. 57: 291–302.

    Article  CAS  PubMed  Google Scholar 

  • Gang, W. S., R. Yang, X. Q. Zhou, D. D. Song, X. Sun & Q. J. Luo, 2013. Utilization of inorganic carbon in Pyropia haitanesis (Rhodophyta) under heat stress. Oceanologia Et Limnologia Sinica 44: 1378–1385.

    Google Scholar 

  • Israel, A. & M. Hophy, 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentration. Global Change Biology 8: 831–840.

    Article  Google Scholar 

  • Jassby, A. D. & T. Platt, 1976. Mathematical formulation of relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography 21: 540–547.

    Article  CAS  Google Scholar 

  • Lin, M. Q., Q. B. Du, F. Q. Yang & X. Y. Liu, 2010. Climate evolution of Nanao in the half-century. Meteorological, Hydrological and Marine instruments 2: 123–127.

    Google Scholar 

  • Major, K. M. & I. R. Davison, 1998. Influence of temperature and light on growth and photosynthetic physiology of Fucus evanescens (Phaeophyta) embryos. European Journal of Phycology 33: 129–138.

    Article  Google Scholar 

  • Mercodo, J. M., F. Javier, L. Gordillo, F. X. Niell & F. L. Figueroa, 1999. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. Journal of Applied Phycology 11: 455–461.

    Article  Google Scholar 

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Raven, J. A., 1997. Inorganic carbon acquisition by marine autotrophs. Advances in Botanical Research incorporating Advances in Plant Pathology 27: 85–209.

    CAS  Google Scholar 

  • Raven, J. A. & R. J. Geider, 1988. Temperature and algal growth. New Phytologist 110: 441–461.

    Article  CAS  Google Scholar 

  • Riebesell, U., K. G. Schulz, R. G. J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers & E. Zöllner, 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.

    Article  CAS  PubMed  Google Scholar 

  • Rothäusler, E., I. Gomez, I. A. Hinojosa, U. Karsten, F. Tala & M. Thiel, 2011. Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophyceae): latitudinal variability in the effects of temperature and grazing. Journal of Phycology 47: 269–281.

    Article  Google Scholar 

  • Schreiber, U. W., Bilger & C. Neubauer, 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In Schulze, E. D. & M. M. Caldwell (eds), Ecophysiology of Photosynthesis. Springer, Berlin: 49–70.

    Google Scholar 

  • Schreiber, U., H. Hormann, C. Neubauer & C. Klughammer, 1995. Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Australian Journal of Plant Physiology 22: 209–220.

    Article  CAS  Google Scholar 

  • Staehr, P. A. & T. Wernberg, 2009. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. Journal of Phycology 45: 91–99.

    Article  CAS  Google Scholar 

  • Vona, V., V. D. M. Rigano, O. Lobosco, S. Carfagna, S. Esposito & C. Rigano, 2004. Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytologist 163: 325–331.

    Article  CAS  Google Scholar 

  • Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307–313.

  • Wernberg, T., G. A. Kendrick & J. C. Phillips, 2003. Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Diversity and Distributions 9: 427–441.

    Article  Google Scholar 

  • Wu, Y., K. Gao & U. Riebesell, 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7: 2915–2923.

    Article  CAS  Google Scholar 

  • Xu, J. T. & K. S. Gao, 2012. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiology 160: 1762–1769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamori, W., K. Noguchi & I. Terashima, 2005. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell and Environment 28: 536–547.

    Article  CAS  Google Scholar 

  • Ye, C. P., M. C. Zhang, J. G. Zhao, Y. F. Yang & Y. Zuo, 2013. Photosynthetic response of the macroalga, Gracilaria lemaneiformis (Rhodophyta), to various N and P levels at different temperatures. International Review of Hydrobiology 98: 245–252.

    CAS  Google Scholar 

  • Zou, D. 2005. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250: 726–735.

  • Zou, D. H. & K. S. Gao, 2002. Photosynthetic bicarbonate utilization in Porphyra haitanensis (Bangiales, Rhodophyta). Chinese Science Bulletin 47: 1629–1633.

    CAS  Google Scholar 

  • Zou, D. H. & K. S. Gao, 2004. Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta) under emersed state. Progress in natural Science 14: 138–144.

    Article  CAS  Google Scholar 

  • Zou, D. H. & K. S. Gao, 2013. Thermal acclimation of respiration and photosynthesis in the marine macroalgae Gracilaria lemaneiformis (Gracilariales, Rhodophyta). Journal of Phycology 49: 61–68.

    Article  Google Scholar 

  • Zou, D. H. & K. S. Gao, 2014. The photosynthetic and respiration responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53: 86–94.

    Article  CAS  Google Scholar 

  • Zou, D. H., K. S. Gao & H. J. Luo, 2011. Short-and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. Journal of Phycology 47: 87–97.

  • Zou, D. H., S. X. Liu, H. Du & J. T. Xu, 2012. Growth and photosynthesis in seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeophyta) cultured at two different temperatures. Journal of Applied Phycology 24: 1321–1327.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41276148 and 41076094). The authors would like to thank Yayun Deng for assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghui Zou.

Additional information

Handling editor: Vasilis Valavanis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zou, D. Do increased temperature and CO2 levels affect the growth, photosynthesis, and respiration of the marine macroalga Pyropia haitanensis (Rhodophyta)? An experimental study. Hydrobiologia 745, 285–296 (2015). https://doi.org/10.1007/s10750-014-2113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2113-0

Keywords

Navigation