Skip to main content

Advertisement

Log in

Ecotonal shifts in diversity and functional traits in zoobenthic communities of karst springs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined the potential importance of distance from the spring source (reach), season, and physicochemical variability on zoobenthic biodiversity, biomass, and trait-based metrics [functional feeding groups (FFG) and habit traits] in three karst spring systems in the Ozarks region of Missouri, USA. Density and biomass were measured during summer and winter in each spring source and three downstream reaches of each springbrook. Nearly 20,000 invertebrates in total were collected, identified, and counted. We measured biomass directly or by length–weight relationships. Overall downstream and seasonal patterns of diversity, biomass, and traits were similar among springs, but species dominance and composition varied significantly. Taxonomic richness increased downstream in all springs, but evenness decreased. Amphipods and isopods were the most abundant taxa at the spring source but were progressively replaced downstream by insects (with dominance varying among springs and seasons). Density and biomass for flatworms, snails, and insects increased downstream, while crustacean numbers diminished along this ecotone. FFG increased from 3 at the spring source (mostly shredders) to 4–7 downstream where scrapers, collectors, and/or predators predominated. Physicochemical factors proved minor at best as mechanistic explanations for ecotonal changes. We conclude that structural and functional community changes could be attributed to a matrix of interrelated factors including organic substrate, food availability, and biotic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (American Public Health Association), 2000. Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC.

  • Barquín, J. & R. G. Death, 2006. Spatial patterns of macroinvertebrate diversity in New Zealand springbrooks and rhithral streams. Journal of the North American Benthological Society 25: 768–786.

    Article  Google Scholar 

  • Barquín, J. & R. G. Death, 2009. Physical and chemical differences in karst springs of Cantabria, northern Spain: do invertebrate communities correspond? Aquatic Ecology 43: 445–455.

    Article  Google Scholar 

  • Barquín, J. & R. G. Death, 2011. Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range? Journal of Limnology 70: 134–146.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bonettini, A. M. & M. Cantonati, 1996. Macroinvertebrate assemblages of springs of the River Sarca catchment (Adamello-Brenta Natural Park, Trention, Italy). Crunoecia 5: 71–78.

    Google Scholar 

  • Bottazzi, E., M. C. Bruno, V. Pieri, A. Di Sabatino, L. Silveri, M. Carolli & G. Rossetti, 2011. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene springs. Journal of Limnology 70: 77–92.

    Article  Google Scholar 

  • Cantonati, M., R. Gerecke & E. Bertuzzi, 2006. Springs of the Alps—sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562: 59–96.

    Article  CAS  Google Scholar 

  • Cantonati, M., L. Füreder, R. Gerecke, I. Jüttner & E. J. Cox, 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science 31: 463–480.

    Article  Google Scholar 

  • Chamier, A. C., 1991. Cellulose digestion and metabolism in the freshwater amphipod Gammarus pseudolimnaeus Bousfield. Freshwater Biology 25: 33–40.

    Article  CAS  Google Scholar 

  • Danks, H. V. & D. D. Williams, 1991. Arthropods of springs, with particular reference to Canada. Memoirs of the Entomological Society of Canada 155: 203–217.

    Article  Google Scholar 

  • Death, R. G., J. Barquín & M. R. Scarsbrook, 2004. Coldwater and geothermal springs. In Harding, J. S., M. P. Mosley, C. Pearson & B. Sorrell (eds), Freshwaters of New Zealand. New Zealand Hydrological Society and New Zealand Limnological Society, Christchurch: 30.31–30.14.

  • Death, R. G. & J. Barquín, 2012. Geographic location alters the diversity – disturbance response. Freshwater Science 31: 636–646.

    Article  Google Scholar 

  • Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritz & W. J. Matthews, 2004. Life on the Edge: the ecology of Great Plains prairie streams. Bioscience 54: 205–216.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining land use effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.

    Article  Google Scholar 

  • Dudley, T. L., S. D. Cooper & N. Hemphill, 1986. Effects of macroalgae on stream invertebrate community. Journal of the North American Benthological Society 5: 93–106.

    Article  Google Scholar 

  • Dumnicka, E., J. Galas, I. Jatulewicz, J. Karlikowska & B. Rzonca, 2013. From spring sources to springbrook: changes in environmental characteristics and benthic fauna. Biologia 68: 142–149.

    Article  Google Scholar 

  • Erman, N. A., 2002. Lessons from a long-term study of springs and spring invertebrates (Sierra Nevada, California, U.S.A.) and implications for conservation and management. In Conference Proceedings. Spring-Fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region.

  • Erman, N. A. & D. C. Erman, 1995. Spring permanence, species richness and the role of drought. In Ferrington, C. (ed.), Biodiversity of Aquatic Insects and Other Invertebrates in Springs. Journal of the Kansas Entomological Society Supplement, Special Publication No. 2: 50–64.

  • Finn, D. S. & N. L. Poff, 2005. Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshwater Biology 50: 243–261.

    Article  Google Scholar 

  • Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.

    Article  Google Scholar 

  • Glazier, D. S., 2009. Springs. In Likens, G. E. (ed.), Encyclopedia of Inland Waters, Vol. 1. Academic Press Elsevier, Oxford, UK: 734–755.

    Chapter  Google Scholar 

  • Glazier, D. S., 2012. Temperature affects food-chain length and macroinvertebrate species richness in spring ecosystems. Freshwater Science 31: 575–585.

    Article  Google Scholar 

  • Gooch, J. L. & D. S. Glazier, 1991. Temporal and spatial patterns in mid-Appalachian springs. Memoirs of the Entomological Society of Canada 155: 29–49.

    Article  Google Scholar 

  • Gregory, S. V., 1983. Plant–herbivore interactions in stream systems. In Barnes, J. R. & G. W. Minshall (eds), Stream Ecology. Plenum Press, New York, NY: 157–190.

    Chapter  Google Scholar 

  • Hawkins, C. P. & H. J. Sedell, 1981. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62: 387–397.

    Article  Google Scholar 

  • Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.

    Article  Google Scholar 

  • Hobbs, III, H. H., 1992. Caves and springs. In: Biodiversity of the Southeastern United States: Aquatic Communities. Wiley, New York: 59–131.

  • Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Article  Google Scholar 

  • Ilg, C. & E. Castella, 2006. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology 51: 840–853.

    Article  Google Scholar 

  • Jacobsen, D., O. Dangles, P. Andino, E. Rodrigo, L. Hamerlik & E. Cadier, 2010. Longitudinal zonation of macroinvertebrates in an Ecuadorian glacier-fed stream: do tropical glacial systems fit the temperate model? Freshwater Biology 55: 1234–1248.

    Article  CAS  Google Scholar 

  • Jones, J. R. E., 1949. A further ecological study of calcareous streams in the Black Mountain district of South Wales. Journal of Animal Ecology 18: 41–57.

    Google Scholar 

  • Kesler, D. H., 1983. Variation in cellulase activity in Physa heterostropha (Gastropoda) and other species of gastropods in a New England pond. American Midland Naturalist 109: 280–287.

    Article  CAS  Google Scholar 

  • Krebs, C. J., 1999. Ecological Methodology, 2nd ed. Harper & Row, New York.

    Google Scholar 

  • Kubíkoá, L., O. Simon, K. Tichá, K. Douda, M. Maciak & M. Bíly, 2012. The influence of mesoscale habitat conditions on the macroinvertebrate composition of springs in a geologically homogeneous area. Freshwater Science 31: 668–679.

    Article  Google Scholar 

  • Kuhn, J., P. Andino, R. Calvez, R. Espinosa, L. Hamerlik, S. Vie, O. Dangles & D. Jacobsen, 2011. Spatial variability in macroinvertebrate assemblages along and among neighboring equatorial glacier-fed streams. Freshwater Biology 56: 2226–2244.

    Article  Google Scholar 

  • Lindegaard, C., K. P. Brodersen, P. Wiberg-Larsen & J. Skriver, 1988. Multivariate analyses of macrofaunal communities in Danish springs and springbrooks. In Botosaneanu, L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 201–219.

    Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science Ltd., Malden, MA.

    Google Scholar 

  • Mann, K. H., 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnological Oceanography 33: 910–930.

    Article  CAS  Google Scholar 

  • McCabe, D. J., 1998. Biological communities in springbrooks. In: Botosaneanu, L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 221–228.

  • Merritt, R. W., J. B. Cummins & M. B. Berg (eds), 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall/Hunt, Dubuque, IA.

    Google Scholar 

  • Miller, J. D. & A. L. Buikema Jr, 1977. The effect of substrate on the distribution of the spring form (Form III) of Gammarus minus Say. Crustaceana 4: 153–163.

    CAS  Google Scholar 

  • Minckley, W. L., 1963. The ecology of a spring stream Doe Run, Meade County, Kentucky. Wildlife Monographs 11: 1–124.

    Google Scholar 

  • Minshall, G. W., 1968. Community dynamics of the benthic fauna in a woodland spring brook. Hydrobiologia 32: 305–339.

    Article  Google Scholar 

  • Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.

    Article  Google Scholar 

  • Odum, H. T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27: 55–112.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Pollard, A. I. & L. L. Yuan, 2010. Assessing the consistency of response metrics of the invertebrate benthos: a comparison of trait- and identity-based measures. Freshwater Biology 55: 1420–1429.

    Article  Google Scholar 

  • Resh, V. H., 1983. Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. Aquatic Insects 5(4): 193–200.

    Article  Google Scholar 

  • Robinson, C. T., D. Schmid, S. Matthias & S. M. Bernasconi, 2008. Functional measures and food webs of high elevation springs in the Swiss Alps. Aquatic Sciences 70: 432–445.

    Article  CAS  Google Scholar 

  • Rosenfeld, J. S. & J. C. Roff, 1992. Examination of the carbon base in southern Ontario streams using stable isotopes. Journal of the North American Benthological Society 11: 1–10.

    Article  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Smith, J., P. J. Wood & J. Gunn, 2003. The influence of habitat structure and flow permanence on invertebrate communities in karst springs systems. Hydrobiologia 510: 53–66.

    Article  Google Scholar 

  • Spitale, D., M. Leira, N. Angeli & M. Cantonati, 2012. Environmental classification of springs of the Italian Alps and its consistency across multiple taxonomic groups. Freshwater Science 31: 563–574.

    Article  Google Scholar 

  • Staudacher, K. & L. Füreder, 2007. Habitat complexity and invertebrates in selected Alpine springs (Schütt, Carinthia, Austria). International Review of Hydrobiologia 92: 465–479.

    Article  Google Scholar 

  • Stern, M. S. & D. H. Stern, 1969. A limnological study of a Tennessee cold springbrook. American Midland Naturalist 82: 62–82.

    Article  Google Scholar 

  • Taniguchi, H. & M. Tokeshi, 2004. Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178.

    Article  Google Scholar 

  • Thomson, K. C., 1986. Geology of Greene County, Missouri. Watershed Management Coordinating Committee, Springfield, MO.

    Google Scholar 

  • Thorp, J. H. & A. P. Covich (eds), 2010. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego, CA.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Von Fumetti, S., P. Nagel, N. Scheifhacken & B. Baltes, 2006. Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 568: 467–475.

    Article  Google Scholar 

  • Ward, J. V. & R. G. Dufford, 1979. Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. Archiv für Hydrobiologie 86: 284–321.

    Google Scholar 

  • Webb, D. W., M. J. Wetzel, P. C. Reed, L. R. Phillippe & T. C. Young, 1988. The macroinvertebrate biodiversity, water quality, and hydrogeology of ten karst springs in the Salem Plateau Section of Illinois, U.S.A. In Botosaneanu, L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks. Backhuys Publishers, Leiden: 39–48.

    Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Williams, D. D. & I. D. Hogg, 1988. Ecology and production of invertebrates in a Canadian coldwater spring-springbrook system. Holarctic Ecology 11: 41–54.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank R.T. Pavlowsky, Marc Owen, and staff at the Ozarks Environmental and Water Resources Institute (OEWRI) at Missouri State University for their support. Special thanks are owed to spring owners T. Lynch, R. Campbell, and R. Lovett. We appreciate the help of L. Bullard from the Watershed Committee of the Ozarks for his assistance with locating the spring sites and sharing his expertise on spring ecosystems. We thank L.A. Bennett, M.A. Blackwood, and C. Freeman from the University of Kansas and J. Shepard and C. Copper for lab and field assistance. Comments from anonymous reviewers helped improve this final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Thorp.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, T.M., Thorp, J.H. Ecotonal shifts in diversity and functional traits in zoobenthic communities of karst springs. Hydrobiologia 738, 1–20 (2014). https://doi.org/10.1007/s10750-014-1907-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1907-4

Keywords

Navigation