Skip to main content
Log in

Growth of pike larvae: effects of prey, turbidity and food quality

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied experimentally the effects of turbidity and prey composition on pike larval growth and hypothesized that pike larval growth varies with turbidity and food quality. We reared the first-feeding pike larvae (Esox lucius) in laboratory tanks with (1) clear or (2) turbid water provided with zooplankton rations from (3) an inner and (4) an outer archipelago site. The sites differ in physical features, salinity, eutrophication status, zooplankton community structure and density. Pike larvae showed the highest weight increase in clear water with zooplankton from the outer site and the poorest weight increase in turbid water with zooplankton as prey from the inner site. Our fatty acid analysis revealed that unsaturated fatty acid levels were highest in the outer site. The relative percentage of copepods was also higher in the outer site. This study supports the hypothesis that turbidity weakens the ability of pike larvae to capture certain prey. Further, zooplankton community composition matters in turbid water, but is not a primary factor in clear water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arts, M. & W. Sprules, 1989. Use of enclosures to detect the contribution of particular zooplankton to growth on young-of-year yellow perch (Perca flavescens). Oecologia 81: 21–27.

    Article  Google Scholar 

  • Ballantyne, A., M. Brett & D. Schindler, 2003. The importance of dietary phosphorus and highly unsaturated fatty acids for sockeye (Onchorhynchus nerka) growth in Lake Washington – a bioenergetics approach. Canadian Journal of Fisheries and Aquatic Sciences 60: 12–22.

    Article  CAS  Google Scholar 

  • Bergenius, M., M. Meekan, D. Robertson & M. McCormick, 2002. Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131: 521–525.

    Article  Google Scholar 

  • Brett, M. & D. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38: 483–499.

    Article  CAS  Google Scholar 

  • Brett, M., D. Müller-Navarra & S. Park, 2000. Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnology and Oceanography 45: 1564–1575.

    Article  CAS  Google Scholar 

  • Candolin, U., J. Engström-Öst & T. Salesto, 2008. Human-induced eutrophication enhances reproductive success through effects on parenting ability in sticklebacks. Oikos 117: 459–465.

    Article  Google Scholar 

  • Confer, J. & G. Lake, 1987. Influence of prey type on growth of young yellow perch (Perca flavescens). Canadian Journal of Fisheries and Aquatic Sciences 44: 2028–2032.

    Article  Google Scholar 

  • Cowles, T., R. Olson & S. Chisholm, 1988. Food selection by copepods: discrimination on the basis of food quality. Marine Biology 100: 41–49.

    Article  Google Scholar 

  • Craig, J. F., 1996. Pike – Biology and Exploitation. Chapman & Hall, London.

    Google Scholar 

  • DeMott, W., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340.

    Article  Google Scholar 

  • DeMott, W. & D. Müller-Navarra, 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biology 38: 649–664.

    Article  CAS  Google Scholar 

  • Desvillettes, C., G. Bourdier & J. Breton, 1997. Changes in lipid class and fatty acid composition during development in pike (Esox lucius L.) eggs and larvae. Fish Physiology and Biochemistry 16: 381–393.

    Article  Google Scholar 

  • Engström-Öst, J. & J. Mattila, 2008. Foraging, growth and habitat choice in turbid water: an experimental study with fish larvae in the Baltic Sea. Marine Ecology Progress Series 359: 275–281.

    Article  Google Scholar 

  • Engström-Öst, J., M. Lehtiniemi, S. H. Jónasdóttir & M. Viitasalo, 2005. Growth of pike larvae (Esox lucius) under different conditions of food quality and salinity. Ecology of Freshwater Fish 14: 385–393.

    Article  Google Scholar 

  • Engström-Öst, J., M. Karjalainen & M. Viitasalo, 2006. Feeding and refuge use by small fish in the presence of cyanobacteria. Environmental Biology of Fishes 76: 109–117.

    Article  Google Scholar 

  • Fleming-Lehtinen, V. & M. Laamanen, 2012. Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuarine, Coastal and Shelf Science 102–103: 1–10.

    Article  Google Scholar 

  • Fraser, A., J. Sargent, J. Gamble & D. Seaton, 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Marine Chemistry 27: 1–18.

    Article  CAS  Google Scholar 

  • Guillard, R. & J. Ryther, 1962. Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve). Canadian Journal of Microbiology 8: 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Hällfors, G. & S. Hällfors, 1992. The Tvärminne collection of algal cultures. In Pokki, J. (ed.), Tvärminne Studies 5. University of Helsinki, Helsinki: 15–17.

    Google Scholar 

  • Hamilton, S., R. Hamilton & P. Sewell, 1993. Extraction of lipids and derivative formation. In Hamilton, R. & S. Hamilton (eds), Lipid Analysis – A Practical Approach. Oxford University Press, Oxford: 13–63.

    Google Scholar 

  • Kaitaranta, J., R. Linko & R. Vuorela, 1986. Lipids and fatty acids in plankton from the Finnish coastal waters of the Baltic Sea. Comparative Biochemistry and Physiology 85: 427–433.

    Google Scholar 

  • Kallasvuo, M., M. Salonen & A. Lappalainen, 2010. Does the zooplankton prey availability limit the larval habitats of pike in the Baltic Sea? Estuarine, Coastal and Shelf Science 86: 148–156.

    Article  Google Scholar 

  • Lehtonen, H., E. Leskinen, R. Selén & M. Reinikainen, 2009. Potential reasons for the changes in the abundance of pike, Esox lucius, in the western Gulf of Finland, 1939–2007. Fisheries Management and Ecology 16: 484–491.

    Article  Google Scholar 

  • Ljunggren, L., A. Sandström, G. Johansson, G. Sundblad & P. Karås, 2005. Rekryteringsproblem hos Östersjöns kustfiskbestånd. Fiskeriverket Informerar 5. (in Swedish)

  • Miner, G. & R. Stein, 1993. Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foraging. Canadian Journal of Fisheries and Aquatic Sciences 50: 781–788.

    Article  Google Scholar 

  • Nilsson, J., J. Andersson, P. Karås & O. Sandström, 2004. Recruitment failure and decreasing catches of perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the coastal waters of southeast Sweden. Boreal Environmental Research 9: 295–306.

    Google Scholar 

  • Persson, J. & T. Vrede, 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshwater Biology 51: 887–900.

    Article  CAS  Google Scholar 

  • Raateoja, M., J. Seppälä, H. Kuosa & K. Myrberg, 2005. Recent changes in trophic state of the Baltic Sea along SW coast of Finland. Ambio 34: 188–191.

    PubMed  Google Scholar 

  • Rabalais, N., E. Turner, R. Diaz & D. Justic, 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Sciences 66: 1528–1537.

    Article  Google Scholar 

  • Rönkkönen, S., E. Ojaveer, T. Raid & M. Viitasalo, 2004. Long-term changes in Baltic herring (Clupea harengus membras) growth in the Gulf of Finland. Canadian Journal of Fisheries and Aquatic Sciences 61: 219–229.

    Article  Google Scholar 

  • Salonen, M. & J. Engström-Öst, 2010. Prey capture of pike Esox lucius larvae in turbid water. Journal of Fish Biology 76: 2591–2596.

    Article  PubMed  CAS  Google Scholar 

  • Salonen, M., L. Urho & J. Engström-Öst, 2009. Effects of turbidity and zooplankton availability on the condition and prey selection of pike larvae. Boreal Environmental Research 14: 981–989.

    Google Scholar 

  • Sargent, J., J. Bell, M. Bell, B. Henderson & D. Tocher, 1995. Requirement criteria for essential fatty acids. Journal of Applied Ichthyology 11: 183–198.

    Article  CAS  Google Scholar 

  • Sargent, J., G. Bell, L. McEvoy, D. Tocher & A. Estevez, 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177: 191–199.

    Article  CAS  Google Scholar 

  • Schiewer, U. (ed.), 2008. Ecology of the Coastal Waters. Springer, Berlin.

    Google Scholar 

  • Suikkanen, S., M. Laamanen & M. Huttunen, 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science 71: 580–592.

    Article  Google Scholar 

  • Suikkanen, S., S. Pulina, J. Engström-Öst, M. Lehtiniemi, S. Lehtinen & A. Brutemark. Climate change and eutrophication induced shifts in northern summer plankton communities. Plos One (in press).

  • Tocher, D. R., G. Mourente & J. R. Sargent, 1992. Metabolism of [1-14C]docosahexaenoate (22:6n-3), [1 -14C]eicosapentaenoate (20:5n-3) and [1-14C]linolenate (18:3n-3) in brain cells from juvenile turbot Scophthalmus maximus. Lipids 27: 494–499.

    Article  CAS  Google Scholar 

  • Utne-Palm, A. C., 2001. Visual feeding of fish in a turbid environment: physical and behavioural aspects. Marine and Freshwater Behaviour and Physiology 35: 111–128.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tvärminne Zoological Station and Pirkanmaa University of Applied Sciences for facilities. H. Knuutila gave advice and assisted in the lab. S. Jónasdóttir advised us on how to analyse fatty acids. We thank the anonymous reviewers, M. Öst for discussions, and A. Vehmaa and A.-C. Utne-Palm for valuable comments on the manuscript. Funding from the Onni Talas Foundation, the Walter and Andreé de Nottbeck Foundation, the R & D Institute Aronia and the Academy of Finland (project no. 125251 and 255566) are greatly acknowledged. The experiment complies with the current laws of Finland and animal welfare was always respected. Permission was not needed by ethical committee (signed as 0-class experiment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiju Salonen.

Additional information

Handling editor: Odd Terje Sandlund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salonen, M., Engström-Öst, J. Growth of pike larvae: effects of prey, turbidity and food quality. Hydrobiologia 717, 169–175 (2013). https://doi.org/10.1007/s10750-013-1575-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1575-9

Keywords

Navigation