Skip to main content
Log in

Fitness benefits and costs of induced defenses in Daphnia carinata (Cladocera: Daphnidae) exposed to cyanobacteria

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Induced defenses can shape the trophic interactions between prey and predators, but the presence, benefits, and costs of induced defenses against harmful algae in zooplankton are little known. Here, the hypothesis that a short-time exposure to harmful algae can induce defenses in zooplankton was tested by evaluating the fitness changes in a single clone of Daphnia carinata (Cladocera: Daphnidae) after the exposure to a bloom-forming cyanobacterium Microcystis aeruginosa. Life-table experiments revealed that the 1-day exposure to M. aeruginosa significantly enhanced the average life span, the net reproductive rate, and the intrinsic rate of population increase of D. carinata in the presence of cyanobacteria, compared to nonexposed individuals. Then, we tested the second hypothesis that the induced defense in zooplankton would carry a cost on fitness in the absence of cyanobacteria. The 1-day exposure to M. aeruginosa significantly depressed the average life span, the net reproductive rate, and the intrinsic rate of population increase of D. carinata when exclusively feeding on a green alga, Chlorella pyrenoidosa. The induced defense against M. aeruginosa in D. carinata after a short-time exposure explains some aspects of the interactions between harmful algae and zooplankton, and may provide new general insights into the predator–prey “arms race”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, A. A., 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Benzie, J. A. H., 1988. The systematic of Australian Daphnia (Cladocera: Daphnidae). Species descriptions and keys. Hydrobiologia 166: 95–161.

    Article  Google Scholar 

  • Brodie, E. D., III. & E. D. Brodie, Jr. 1999. Predator–prey arms races. Bioscience 49: 557–568.

    Article  Google Scholar 

  • Cáceres, T., W. He, R. Naidu & M. Megharaj, 2007. Toxicity of chlorpyrifos and TGP alone and in combination to Daphnia carinata: the influence of microbial degradation in natural water. Water Research 41: 4497–4503.

    Article  PubMed  Google Scholar 

  • Chen, F. & P. Xie, 2003. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake. Journal of Freshwater Ecology 18: 97–104.

    Article  CAS  Google Scholar 

  • Ferrão-Filho, A. S. & B. Kozlowsky-Suzuki, 2011. Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs 9: 2729–2772.

    Article  Google Scholar 

  • Gan, N., Q. Huang, L. Zheng & L. Song, 2010. Quantitative assessment of toxic and nontoxic Microcystis colonies in natural environments using fluorescence in situ hybridization and flow cytometry. Science China: Life Science 53: 973–980.

    Article  CAS  Google Scholar 

  • Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnology and Oceanography 26: 201–218.

    Article  Google Scholar 

  • Gustafsson, S. & L. Hansson, 2004. Development of tolerance against toxic cyanobacteria in Daphnia. Aquatic Ecology 38: 37–44.

    Article  Google Scholar 

  • Gustafsson, S., K. Rengefors & L. Hansson, 2005. Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86: 2561–2567.

    Article  Google Scholar 

  • Hairston, N. G. Jr., W. Lampert, C. E. Cáceres, C. L. Holtmeier, L. J. Weider, U. Gaedle, J. M. Fischer, J. A. Fox & D. M. Post, 1999. Rapid evolution revealed by dormant eggs. Nature 401: 446.

    Article  Google Scholar 

  • Hairston, N. G. Jr., C. L. Holtmeier, L. J. Weider, D. M. Post, J. M. Fischer, C. E. Cáceres, J. A. Fox & U. Gaedke, 2001. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity. Evolution 55: 2203–2214.

    Article  PubMed  Google Scholar 

  • Harvell, C. D., 1990. The ecology and evolution of inducible defenses. The Quarterly Review of Biology 65: 323–340.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P. D. N. & C. Moran, 1980. Enzyme variability in natural populations of Daphnia carinata King. Heredity 45: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Jang, M., K. Ha, G. Joo & N. Takamura, 2003. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology 48: 1540–1550.

    Article  Google Scholar 

  • Jang, M., K. Ha, M. C. Lucas, G. Joo & N. Takamura, 2004. Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquatic Toxicology 68: 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Jang, M., J. Jung & N. Takamura, 2007. Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemicals concentrations. Limnology and Oceanography 52: 1454–1466.

    Article  CAS  Google Scholar 

  • Jiang, X., D. J. Lonsdale & C. J. Gobler, 2010. Grazers and vitamins shape chain formation in a bloom-forming dinoflagellate, Cochlodinium polykrikoides. Oecologia 164: 455–464.

    Article  PubMed  Google Scholar 

  • Karban, R. & A. A. Agrawal, 2002. Herbivore offense. Annual Review of Ecology and Systematics 33: 641–664.

    Article  Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton–cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21: 483–490.

    Article  Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.

    Article  Google Scholar 

  • Leflaive, J. & L. Ten-Hage, 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199–214.

    Article  CAS  Google Scholar 

  • Matveev, V., L. Matveeva & G. J. Jones, 1994. Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: implications for biomanipulation in Australia. Australian Journal of Marine and Freshwater Research 45: 889–904.

    Article  Google Scholar 

  • O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

    Article  Google Scholar 

  • Paerl, H. W. & D. F. Millie, 1996. Physiological ecology of toxic aquatic cyanobacteria. Phycologia 35(Supplement): 160–167.

    Article  Google Scholar 

  • Pohnert, G., M. Steinke & R. Tollrian, 2007. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends in Ecology and Evolution 22: 198–204.

    Article  PubMed  Google Scholar 

  • Rengefors, K., I. Karlsson & L. Hansson, 1998. Algal cyst dormancy: a temporal escape from herbivory. Proceedings of the Royal Society of London Series B 265: 1353–1358.

    Article  Google Scholar 

  • Sarnelle, O. & A. E. Wilson, 2005. Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnology and Oceanography 50: 1565–1570.

    Article  Google Scholar 

  • Semyalo, R., T. Rohrlack & P. Larsson, 2009. Growth and survival responses of a tropical Daphnia (Daphnia lumholtzi) to cell-bound microcystins. Journal of Plankton Research 31: 827–835.

    Article  CAS  Google Scholar 

  • Svensson, E. I. & L. Råberg, 2010. Resistance and tolerance in animal enemy-victim coevolution. Trends in Ecology and Evolution 25: 267–274.

    Article  PubMed  Google Scholar 

  • Tillmanns, A. R., A. E. Wilson, R. P. Frances & O. Sarnelle, 2008. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundamental and Applied Limnology 171: 285–295.

    Article  Google Scholar 

  • Tillmanns, A. R., S. K. Burton & F. R. Pick, 2011. Daphnia pre-exposed to toxic Microcystis exhibit feeding selectivity. International Review of Hydrobiology 96: 20–28.

    Article  Google Scholar 

  • Van Donk, E., A. Ianora & M. Vos, 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19.

    Article  Google Scholar 

  • Wilson, A. E., O. Sarnelle & A. E. Tillmanns, 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnology and Oceanography 51: 1915–1924.

    Article  Google Scholar 

  • Yang, Z., F. Kong, X. Shi & H. Cao, 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563: 225–230.

    Article  Google Scholar 

  • Yang, Z., F. Kong, Z. Yang, M. Zhang, Y. Yu & S. Qian, 2009. Benefits and costs of the grazer-induced colony formation in Microcystis aeruginosa. International Journal of Limnology 45: 203–208.

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive comments. The study was supported by the National Science Foundation of China (40506002 and 31172043), the Fundamental Research Funds for the Central Universities, and Special Fund for Agro-scientific Research in the Public Interest (201203065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Jiang.

Additional information

Handling editor: Karl E. Havens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Liang, H., Yang, W. et al. Fitness benefits and costs of induced defenses in Daphnia carinata (Cladocera: Daphnidae) exposed to cyanobacteria. Hydrobiologia 702, 105–113 (2013). https://doi.org/10.1007/s10750-012-1312-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1312-9

Keywords

Navigation