Skip to main content
Log in

New methods for the investigation of leaf litter breakdown in river sediments

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The breakdown rate of leaf litter buried inside river sediments (i.e., in the hyporheic zone) remains poorly known. The burial of large bags (15 × 15 cm) used in the benthic layer generates disturbances of the vertical connectivity with surface water, and thus affects the breakdown rate. We performed field and laboratory experiments to test the suitability of two leaf litter containers: small litter bags (5 × 4 cm) and perforated stainless steel cylinders (6 cm long, 1.6 cm in diameter), both introduced inside sediments using mobile mini-piezometers (1 m long, 1.7 cm or 3 cm in diameter). We compared the two containers for (i) the hydrological exchanges toward leaf litter, (ii) the impact of a benthic shredder on leaf breakdown, and (iii) the response of leaf litter breakdown to changes in sediment characteristics. The two methods give similar patterns of breakdown rates with stream sediment characteristics, but the use of perforated stainless steel cylinders provides an artificial empty volume in which invertebrates can over degrade leaf litter. Small plastic bags do not alter physico-chemical conditions around leaf litter and give lower values of breakdown rates in the hyporheic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelho, M., 2001. From litterfall to breakdown in streams: a review. TheScientificWorld 1: 656–680.

    Article  CAS  Google Scholar 

  • Abelho, M. & M. A. S. Graça, 1998. Litter in a first-order stream of a temperate deciduous forest (Margaraca Forest, central Portugal). Hydrobiologia 386: 147–152.

    Article  Google Scholar 

  • Bonin, P. & N. Raymond, 1990. Effects of oxygen on denitrification in marine sediments. Hydrobiologia 207: 115–122.

    Article  CAS  Google Scholar 

  • Bou, C. & R. Rouch, 1967. Un nouveau champ de recherche sur la faune aquatique souterraine. Comptes Rendus de l’académie des sciences de Paris série III 265: 369–370.

    Google Scholar 

  • Boulton, A. J., 1993. Stream ecology and surface-hyporheic hydrologic exchange: implications, techniques and limitations. Australian Journal of Marine and Freshwater Research 44: 553–564.

    Article  Google Scholar 

  • Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Australian Journal of Marine and Freshwater Research 42: 1–43.

    Article  CAS  Google Scholar 

  • Boulton, A. J. & J. G. Foster, 1998. Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales, Australia. Freshwater Biology 40: 229–243.

    Article  Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & M. H. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematic 29: 59–81.

    Article  Google Scholar 

  • Chauvet, E., 1987. Changes in the chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia 148: 35–44.

    Article  CAS  Google Scholar 

  • Chauvet, E., 1988. Influence of the environment on willow leaf litter decomposition in the alluvial corridor of the Garonne River. Archiv fur Hydrobiologie 112: 371–386.

    Google Scholar 

  • Cornut, J., A. Elger, D. Lambrigot, P. Marmonier & E. Chauvet, 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biology 55: 2541–2556.

    Article  Google Scholar 

  • Crenshaw, C. L. & H. M. Valett, 2002. The effect of coarse particulate organic matter on fungal biomass and invertebrate density in the subsurface of a headwater stream. Journal of the North American Benthological Society 21: 28–42.

    Article  Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. BioScience 24: 631–641.

    Article  Google Scholar 

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.

    Article  Google Scholar 

  • Dahm, C. N., D. L. Carr & R. L. Coleman, 1991. Anaerobic carbon cycling in stream ecosystems. Verhandlungen des Internationalen Verein Limnologie 24: 1600–1604.

    CAS  Google Scholar 

  • Dole-Olivier, M. J. & P. Marmonier, 1992a. Effects of spates on the vertical distribution of the interstitial community. Hydrobiologia 230: 49–61.

    Article  Google Scholar 

  • Dole-Olivier, M. J. & P. Marmonier, 1992b. Patch distribution of interstitial communities: prevailing factors. Freshwater Biology 27: 177–191.

    Article  Google Scholar 

  • Dumas, J. & S. Marty, 2006. A new method to evaluate egg-to-fry survival in Salmonids, trials with Atlantic salmon. Journal of Fish Biology 68: 284–304.

    Article  Google Scholar 

  • Elosegi, A. & J. Pozo, 2005. Litter input. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 3–11.

  • Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanography 40: 159–164.

    Article  CAS  Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in bear brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  • Gayraud, S. & M. Philippe, 2003. Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 french streams. International Review of Hydrobiology 88: 77–93.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of seawater analysis. Verlag Chemie, Berlin.

    Google Scholar 

  • Hall, R. O., J. B. Wallace & S. L. E. Gert, 2000. Organic matter flow in stream food webs with reduced detritical resource base. Ecology 81: 3445–3463.

    Article  Google Scholar 

  • Herbst, G. N., 1980. Effects of burial on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream. Oikos 35: 411–424.

    Article  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038.

    Article  Google Scholar 

  • Lecerf, A., M. Dobson, C. K. Dang & E. Chauvet, 2005. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146: 432–442.

    Article  PubMed  Google Scholar 

  • Marchant, R., 1988. Vertical-distribution of benthic invertebrates in the bed of the Thomson River, Victoria. Australian Journal of Marine and Freshwater Research 39: 775–784.

    Article  Google Scholar 

  • Maridet, L., J. G. Wasson & M. Philippe, 1992. Vertical distribution of fauna in the bed sediment of three running water sites: influence of physical and trophic factors. Regulated Rivers: Research & Management 7: 45–55.

    Article  Google Scholar 

  • Maridet, L., J. G. Wasson & M. Philippe, 1995. Benthic organic matter dynamics in three streams: riparian vegetation or bed morphology control? Archiv fur Hydrobiologie 132: 415–425.

    Google Scholar 

  • Maridet, L., M. Philippe, J. G. Wasson & J. Mathieu, 1996. Spatial and temporal distribution of macroinvertebrates and trophic variables within the bed sediment of three streams differing by their morphology and riparian vegetation. Archiv fur Hydrobiologie 136: 41–64.

    Google Scholar 

  • Marmonier, P. & M. J. Dole, 1986. Les amphipodes des sédiments d’un bras court-circuité du Rhône. Sciences de l’eau 5: 461–486.

    Google Scholar 

  • Marmonier, P., C. Piscart, P.-E. Sarriquet, D. Azam & E. Chauvet, 2010. Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone. Hydrobiologia 641: 203–214.

    Article  CAS  Google Scholar 

  • Medeiros, A. O., C. Pascoal & M. A. S. Graça, 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology 54: 142–149.

    Article  Google Scholar 

  • Mermillod-Blondin, F., L. Mauclaire & B. Montuelle, 2005. Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments. Water Research 39: 1687–1698.

    Article  PubMed  CAS  Google Scholar 

  • Mesquita, A., C. Pascoal & F. Cassio, 2007. Assessing effects of eutrophication in streams based on breakdown of eucalypt leaves. Fundamental and Applied Limnology 168: 221–230.

    Article  CAS  Google Scholar 

  • Metzler, G. M. & L. A. Smock, 1990. Storage and dynamics of subsurface detritus in a sand-bottomed stream. Canadian Journal of Fisheries and Aquatic Sciences 47: 588–594.

    Article  Google Scholar 

  • Morrice, J. A., C. N. Dahm & H. M. Valett, 2000. Terminal electron accepting processes in the alluvial sediments of a headwater stream. Journal of the North American Benthological Society 19: 593–608.

    Article  Google Scholar 

  • Naamane, B., H. Chergui & E. Pattee, 1999. The breakdown of leaves of poplar and holm oak in three Moroccan streams: effect of burial in the sediment. Annales De Limnologie-International Journal of Limnology 35: 263–275.

    Article  Google Scholar 

  • Naegeli, M. W., U. Hartmann, E. I. Meyer & U. Uehlinger, 1995. POM-dynamics and community respiration in the sediments of a floodprone prealpine river (Necker, Switzerland). Archiv fur Hydrobiologie 133: 339–347.

    Google Scholar 

  • Navel, S., F. Mermillod-Blondin, B. Montuelle, E. Chauvet, L. Simon, C. Piscart & P. Marmonier, 2010. Interactions between fauna and sediment control the breakdown of plant matter in river sediments. Freshwater Biology 55: 753–766.

    Article  CAS  Google Scholar 

  • Navel, S., F. Mermillod-Blondin, B. Montuelle, E. Chauvet, L. Simon & P. Marmonier, 2011. Water-sediment exchanges control microbial processes associated with leaf litter degradation in the hyporheic zone: a microcosm study. Microbial Ecology 61: 968–979.

    Article  PubMed  Google Scholar 

  • Olsen, D. A. & C. R. Townsend, 2003. Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology 48: 1363–1378.

    Article  Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Piscart, C., R. Genoel, S. Doledec, E. Chauvet & P. Marmonier, 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157: 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  • Piscart, C., F. Mermillod-Blondin, C. Maazouzi, S. Mérigoux & P. Marmonier, 2011a. Potential impact of invasive amphipods on leaf litter recycling in aquatic ecosystems. Biological Invasions 13: 2861–2868.

    Article  Google Scholar 

  • Piscart, C., S. Navel, C. Maazouzi, B. Montuelle, J. Cornut, F. Mermillod-Blondin, M. Creuzé des Châtelliers, L. Simon & P. Marmonier, 2011b. Leaf litter recycling in benthic and hyporheic layers in agricultural streams with different types of land use. Science of the Total Environment 409: 4373–4380.

    Article  PubMed  CAS  Google Scholar 

  • Richards, C. & K. L. Bacon, 1994. Influence of fine sediment on macroinvertebrate colonization of surface and hyporheic stream substrates. Great Basin Naturalist 54: 106–113.

    Google Scholar 

  • Rounick, J. S. & M. J. Winterbourn, 1983. Leaf processing in 2 contrasting beech forest streams—effects of physical and biotic factors on litter breakdown. Archiv fur Hydrobiologie 96: 448–474.

    Google Scholar 

  • Rulik, M., P. Zavrelova & M. Duchoslav, 2001. Decomposition of two different POM types in surface water and within hyporheic sediments of a small lowland stream (Sitka, Czech Republic). International Review of Hydrobiology 86: 487–500.

    Article  CAS  Google Scholar 

  • Rysgaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen & L. P. Nielsen, 1994. Oxygen regulation of nitrification and denitrification in sediments. Limnology and Oceanography 39: 1643–1652.

    Article  CAS  Google Scholar 

  • Santmire, J. A. & L. G. Leff, 2007a. The effect of sediment grain size on bacterial communities in streams. Journal of the North American Benthological Society 26: 601–610.

    Article  Google Scholar 

  • Santmire, J. A. & L. G. Leff, 2007b. The influence of stream sediment particle size on bacterial abundance and community composition. Aquatic Ecology 41: 153–160.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., M. M. Carreiro & S. Alvarez, 2002. Enzyme and microbial dynamics during litter decomposition. In Burns, R. & R. P. Dick (eds), Enzymes in the Environment. Marcel Dekker, New York: 249–266.

    Google Scholar 

  • Smith, J. J. & P. S. Lake, 1993. The breakdown of buried and surface-placed leaf-litter in an upland stream. Hydrobiologia 271: 141–148.

    Article  Google Scholar 

  • Smock, L. A., 1990. Spatial and temporal variation in organic matter storage in low-gradient, headwater streams. Archiv fur Hydrobiologie 118: 169–184.

    CAS  Google Scholar 

  • Strayer, D. L., S. E. May, P. Nielsen, W. Wollheim & S. Hausam, 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Archiv fur Hydrobiologie 140: 131–144.

    CAS  Google Scholar 

  • Suberkropp, K. & E. Chauvet, 1995. Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76: 1433–1445.

    Article  Google Scholar 

  • Tachet, H., Richoux, P., Bournaud, M. & P. Usseglio-Polatera, 2000. Invertébrés d’eau Douce: Systématique, Biologie, Écologie. CNRS eds, Paris.

  • Tillman, D. C., A. H. Moerke, C. L. Ziehl & G. A. Lamberti, 2003. Subsurface hydrology and degree of burial affect mass loss and invertebrate colonisation of leaves in a woodland stream. Freshwater Biology 48: 98–107.

    Article  CAS  Google Scholar 

  • Triska, F. J., J. H. Duff & R. J. Avanzino, 1993. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial–aquatic interface. Hydrobiologia 251: 167–184.

    Article  CAS  Google Scholar 

  • Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran desert stream. Journal of the North American Benthological Society 9: 201–215.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Wallace, J. B., T. F. Cuffney, S. L. Eggert & M. R. Whiles, 1997. Stream organic matter inputs, storage, and export for Satellite Branch at Coweeta Hydrologic Laboratory, North Carolina, USA. Journal of the North American Benthological Society 16: 67–74.

    Article  Google Scholar 

  • Webster, J. R. & J. L. Meyer, 1997. Stream organic matter budgets. Journal of the North American Benthological Society 16: 3–161.

    Article  Google Scholar 

  • Willoughy, L. G. & D. W. Sutcliffe, 1976. Experiments on feeding and growth of the amphipod Gammarus pulex (L.) related to its distribution in the river Duddon. Freshwater Biology 6: 577–586.

    Article  Google Scholar 

  • Wood, P. M., 1986. Nitrification as a bacterial energy source. In Prosser, J. I. (ed.), Nitrification. IRL Press, Oxford: 39–62.

    Google Scholar 

  • Woodcock, T. S. & A. D. Huryn, 2005. Leaf litter processing and invertebrate assemblages along a pollution gradient in a Maine (USA) headwater stream. Environmental Pollution 134: 363–375.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Félix Vallier (LEHF, Villeurbanne) and Julien Cornut (EcoLab, Toulouse) for their assistance. This study was supported by the InBioProcess project of the ANR-Biodiversity 2006 programme (ANR-06-BDIV-007-01) and by the methodological aspects of the Field Observatory for Urban Water Management (OTHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marmonier.

Additional information

Handling editor: Nicholas R. Bond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navel, S., Piscart, C., Mermillod-Blondin, F. et al. New methods for the investigation of leaf litter breakdown in river sediments. Hydrobiologia 700, 301–312 (2013). https://doi.org/10.1007/s10750-012-1239-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1239-1

Keywords

Navigation