Skip to main content
Log in

Morphology, biochemistry, and growth of raphidophyte strains from the Gulf of California

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Strains of raphidophytes from different regions of the Gulf of California were established for identification and biochemical description. Raphidophyte in our coasts have been traditionally identified based on microscopic observations, a biochemical analyses of strains present in our coast is needed for a more detailed characterization and species confirmation. Strains were identified by morphological observations and sequencing of the 5.8S and COI regions. Cells were cultivated in modified f/2 media at 20°C with a light–dark cycle (12 h:12 h) and 150 μmol m−2 s−1 light intensity. Pigments were identified by HPLC, brevetoxins by LC–MS/MS, fatty acids by gas chromatography, superoxide radicals by spectrophotometry, and lipid peroxidation by the determination of thiobarbituric acid reactive substances. Strains were identified as Chattonella subsalsa, C. marina, and Fibrocapsa japonica. In all strains, the main pigment was chlorophyll a, followed by fucoxanthin, chlorophyll c1 and c2, violaxanthin, β-carotene, and diadinoxanthin. Strains were tested for PbTx-1, PbTx-2, PbTx-3, PbTx-6, PbTx-9, PbTx-carboxylic acid, brevenal, and brevisin; none were detected. All strains presented superoxide radical production and lipid peroxidation. The main fatty acids were 18:4 (n-3) and 20:5 (n-3). Strains had typical fatty acid composition for raphidophytes and produced brevetoxin-like compounds, had superoxide radical production, and lipid peroxidation. With this contribution, we confirm the presence of C. subsalsa, C. marina and F. japonica in the Gulf of California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, M. S., S. Khan, O. Arakawa & Y. Onoue, 1995. Properties of hemaglutinins newly separated from toxic phytoplankton. Biochimica et Biophysica Acta 1243: 509–512.

    Article  PubMed  Google Scholar 

  • Arzul, G., G. Bodennec, P. Gentien, P. Bornens & M.-P. Crassous, 1998. The effect of dissolved oxygen on the haemolytic property of Gymnodinium ichtiotoxins. In Reguera, B., J. Blanco, M. L. Fernández & T. Wyatt (eds), Harmful Algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Vigo: 611–614.

    Google Scholar 

  • Asada, K., K. Kiso & K. Yoshikawa, 1974. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. Journal of Biological Chemistry 249: 2175–2181.

    PubMed  CAS  Google Scholar 

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, Seidman, J. A. Smith & K. Struhl, 2002. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology. Wiley, New York.

    Google Scholar 

  • Band-Schmidt, C. J., M. L. Morquecho, D. U. Hernández-Becerril, A. Reyes-Salinas & E. Bravo-Sierra, 2004. Raphidopyceans in Mexican coasts. Hydrobiologia 515: 79–84.

    Article  Google Scholar 

  • Band-Schmidt, C. J., A. Martínez-López & I. Gárate-Lizárraga, 2005. First record of Chattonella marina in Bahía de La Paz, Gulf of California. Harmful Algae News, IOC Newsletter on Toxic Algae and Algal Blooms 28: 6–7.

    Google Scholar 

  • Barnung, T. N. & O. Grahl-Nielsen, 1987. The fatty acids profile in Cod (Gadus morhua L.) eggs and larvae. Developmental variations and responses to oil pollution. Sarsia 72: 412–417.

    Google Scholar 

  • Barraza-Guardado, R., R. Cortés-Altamirano & A. Sierra-Beltrán, 2004. Marine die-offs from Chattonella marina and Ch. cf. ovata in Kun Kaak Bay, Sonora in the Gulf of California. Harmful Algae News, IOC Newsletter on Toxic Algae and Algal Blooms 25: 7–8.

    Google Scholar 

  • Biecheler, B., 1936. Sur une chloromonadine nouvelle d’eau saumatre Chattonella subsalsa n. gen. n. sp. Archives de Zoologie Experimentale et Generale 78: 79–83.

    Google Scholar 

  • Bourdelais, A. J., C. R. Tomas, J. Naar, J. Kubanek & D. G. Baden, 2002. New fish-killing alga in coastal Delaware produces neurotoxins. Environmental Health Perspectives 110: 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, H. A., C. R. Tomas, T. Tengs, J. W. Kempton, A. J. Lewitus & D. W. Oldach, 2006. Raphidophyceae [Chadefaud ex Silva] systematic and rapid identification: sequence analyses and real-time PCR assays. Journal of Phycology 42: 1333–1348.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bravo-Sierra, E., 2004. Fitoflagelados potencialmente tóxicos y nocivos de costas del Pacífico mexicano. Revista de Biología Tropical 52(Suppl. 1): 5–16.

    PubMed  Google Scholar 

  • Bustillos-Guzmán, J., D. J. López-Cortés, F. Hernández & I. Murillo, 2000. Pigment signatures associated with an anoxic coastal zone: Bahía Concepción, Gulf of California. Journal of Experimental Marine Biology and Ecology 249: 77–88.

    Article  PubMed  Google Scholar 

  • Cakmak, I., D. A. M. Van de Wetering, H. Marschner & H. F. Bienfait, 1987. Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. Plant Physiology 8: 310–314.

    Article  Google Scholar 

  • Demura, M., M.-H. Noёl, F. Kasai, M. M. Watanabe & M. Kawachi, 2009. Taxonomic revision of Chattonella antiqua, C. marina and C. ovata (Raphidophyceae) based on their morphological characteristics and genetic diversity. Phycology 48: 518–535.

    Article  Google Scholar 

  • Doke, N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophtora infestans and to the hyphall wall component. Physiology and Plant Pathology 23: 345–357.

    Google Scholar 

  • Dorantes-Aranda, J. J., L. M. García-de la Parra, R. Alonso-Rodríguez & L. Morquecho, 2009. Hemolytic activity and fatty acids composition in the ichthyotoxic dinoflagellate Cochlodinium polykrikoides isolated from Bahía de La Paz, Gulf of California. Marine Pollution Bulletin 58: 1401–1408.

    Article  PubMed  CAS  Google Scholar 

  • Drossos, G., A. Lazou, P. Panagopoulos & S. Westaby, 1995. Deferoxamine cardioplegia reduces superoxide radical production in human myocardium. The Annals of Thoracic Surgery 59: 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Errera, R. M., A. Bourdelais, M. A. Drennan, E. B. Dodd, D. W. Henrichs & L. Campbell, 2010. Variation in brevetoxin and brevenal content among clonal cultures of Karenia brevis may influence bloom toxicity. Toxicon 55: 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Frausto-Sotelo, E. D., 2004. Determinación de mareas rojas y calidad de agua en la desembocadura del Estero de San Cristóbal en San Blas Nayarit. Bachelor thesis. Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.

  • Fu, M., A. Koulman, M. van Rijsel, A. Lutzen, M. Karin de Boer, M. R. Tyl & G. Liebezeit, 2004. Chemical characterisation of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophcyeae). Toxicon 43: 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Gárate-Lizárraga, I., C. J. Band-Schmidt, D. J. López-Cortés & J. J. Bustillos-Guzmán, 2009. Raphidophytes in Bahía de La Paz, Gulf of California. Harmful Algae News, IOC Newsletter on Toxic Algae and Algal Blooms 40(1): 4.

    Google Scholar 

  • Giner, J. L., H. Zhao & C. Tomas, 2008. Sterols and fatty acids of three harmful algae previously assigned as Chattonella. Phytochemistry 69: 2167–2171.

    Article  PubMed  CAS  Google Scholar 

  • Guillard, R. R. L., 1973. Division rates. In Stein, J. R. (ed.), Handbook of Phycological Methods. Cambridge University, London.

    Google Scholar 

  • Hallegraeff, G. M. & Y. Hara, 2003. Taxonomy of harmful marine raphidophytes. In Hallegraeff, G. M., D. M. Anderson & A. D. Cembella (eds), Manual on Harmful Marine Microalgae. Intergovernmental Oceanographic Commission, UNESCO Publishing, Paris.

    Google Scholar 

  • Henriksen, P., B. Riemann, H. Kaas, H. M. Sørensen & H. L. Sørensen, 2002. Effects of nutrient-limitation and irradiance on marine phytoplankton pigments. Journal of Plankton Research 24: 835–858.

    Article  CAS  Google Scholar 

  • Hiroishi, S., H. Okada, I. Imai & T. Yoshida, 2005. High toxicity of the novel bloom-forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 4: 783–787.

    Article  Google Scholar 

  • Hosoi-Tanabe, S., I. Otake & Y. Sako, 2006. Phylogenetic analysis of noxious red tide flagellate Chattonella antiqua, Chattonella marina, Chattonella ovata, and Chattonella verruculosa (Raphidophyceae) based on the rRNA gene family. Fisheries Science 72: 1200–1208.

  • Imai, I. & M. Yamaguchi, 2012. Life cycle, physiology, ecology and red tide occurrences of the fish killing raphidophyte Chattonella. Harmful Algae 14: 46–70.

    Google Scholar 

  • Ishimatsu, A., T. Oda, M. Yoshida & M. Ozaki, 1996. Oxygen radicals are probably involved in the mortality of yellowtail by Chattonella marina. Fisheries Science 62: 836–837.

    CAS  Google Scholar 

  • Jeffrey, S. W. & M. Vesk, 1997. Introduction to marine phytoplankton and their pigment signatures. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, Monographs on Oceanographic Methodology. SCOR-UNESCO, Paris: 37–84.

    Google Scholar 

  • Kamikawa, R., I. Masuda, K. Oyama, S. Yoshimatsu & Y. Sako, 2007. Genetic variation in mitochondrial genes and intergenic spacer region in harmful algae Chattonella species. Fisheries Science 73: 871–880.

    Article  CAS  Google Scholar 

  • Katano, T., M. Yoshida, J. Lee, M.-S. Han & Y. Hayami, 2009. Fixation of Chattonella antiqua and C. marina (Raphidophyceae) using Hepes-buffered paraformaldehyde and glutaraldehyde for flow cytometry and light microscopy. Phycology 48: 473–479.

    Article  Google Scholar 

  • Khan, S., M. S. Ahmed, O. Arakawa & Y. Onoue, 1995. Properties of neurotoxins separated from a harmful red tide organism Chattonella marina. The Israeli Journal of Aquaculture-Bamidgeh 47: 137–141.

    Google Scholar 

  • Khan, S., O. Arakawa & Y. Onoue, 1996a. A toxicological study of the marine phytoflagellate, Chattonella antiqua (Raphidophyceae). Phycology 35: 239–244.

    Article  Google Scholar 

  • Khan, S., O. Arakawa & Y. Onoue, 1996b. Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae). Journal of the World Aquaculture Society 27: 254–263.

    Article  Google Scholar 

  • Khan, S., O. Arakawa & Y. Onoue, 1997. Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquaculture Research 28: 9–14.

    Article  Google Scholar 

  • Kim, D., T. Okamoto, T. Oda, K. Tachibana, K. S. Lee, A. Ishimatsu, Y. Matsuyama, T. Honjo & T. Muramatsu, 2001. Possible involvement of the glycocalyx in the icthyotoxicity of Chattonella marina (Raphidophyceae): immunological approach using antiserum against cell surface structures of the flagellate. Marine Biology 139: 625–632.

    Google Scholar 

  • Kim, D., A. Nakamura, T. Okamoto, N. Komatsu, T. Oda, A. Ishimatsu & T. Muramatsu, 1999. Toxic potential of the Raphidophyte Olisthodiscus luteus: mediation by reactive oxygen species. Journal of Plankton Research 21: 1017–1027.

    Article  CAS  Google Scholar 

  • Klinbunga, S., N. Khamnamtong, A. Tassanakajon, N. Puanglarp, P. Jarayabhand & W. Yoosukh, 2003. Molecular genetic identification tools for three commercially cultured oysters (Crassostrea belcheri, Crassostrea iredalei and Saccostrea cucullata) in Thailand. Marine Biotechnology 5: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, A., T. Nakashima, K. Yamaguchi & T. Oda, 2005. Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 141: 297–305.

    Article  PubMed  Google Scholar 

  • Lepage, G. & C. C. Roy, 1984. Improved recovery of fatty acids through direct transesterification without prior extraction or purification. Journal of Lipid Research 25: 1391–1396.

    PubMed  CAS  Google Scholar 

  • Lepage, G. & C. C. Roy, 1986. Direct transesterification of all classes of lipids in a one-step reaction. Journal of Lipid Research 27: 115–120.

    Google Scholar 

  • López-Cruz, R. I., T. Zenteno-Savín & F. Galván-Magaña, 2010. Superoxide production, oxidative damage and enzymatic antioxidant defenses in shark skeletal muscle. Comparative Biochemistry and Physiology. 156: 50–56.

    Article  PubMed  Google Scholar 

  • Marshall, J. A. & G. M. Hallegraeff, 1999. Comparative ecology of the harmful alga Chattonella marina (Raphidophyceae) from South Australia and Japanese waters. Journal of Plankton Research 21: 1809–1822.

    Article  Google Scholar 

  • Marshall, J. A. & S. Newman, 2002. Differences in photoprotective pigment production between Japanese and Australian strains of Chattonella marina (Raphidophyceae). Journal of Experimental Marine Biology and Ecology 272: 13–27.

    Article  CAS  Google Scholar 

  • Marshall, J. A., P. D. Nichols & G. M. Hallegraeff, 2002. Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. Journal of Applied Phycology 14: 255–265.

    Article  CAS  Google Scholar 

  • Marshall, J. A., P. D. Nichols, B. Hamilton, R. J. Lewis & G. M. Hallegraeff, 2003. Ichtiotoxicity of Chattonella marina (Raphidophyeae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2: 273–281.

    Article  CAS  Google Scholar 

  • Marshall, J. A., T. Ross, S. Pyecroft & G. M. Hallegraeff, 2005. Superoxide production by marine microalgae. II. Towards understanding ecological consequences and possible functions. Marine Biology 147: 514–549.

    Google Scholar 

  • Martínez-López, A., C. J. Band-Schmidt, D. Escobedo-Urías & A . E. Ulloa-Pérez, 2006. Bloom of Chattonella subsalsa in an impacted coastal lagoon in the Gulf of California. Harmful Algae News, IOC Newsletter on Toxic Algae and Algal Blooms 31: 1, 4–5.

  • Mignot, J. P., 1976. Compléments a l’étude des Chloromonadines. Ultrastructure de Chattonella subsalsa Biecheler flagella d’eau saumâtre. Protistologica 12: 279–293.

    Google Scholar 

  • Mostaert, A. E., U. Karsten, Y. Hara & M. W. Watanabe, 1998. Pigments and fatty acids of marine raphidophytes: a chemotaxonomic re-evaluation. Phycological Research 46: 213–220.

    Article  CAS  Google Scholar 

  • Nichols, P. D., J. K. Volkman, G. M. Hallegraeff & S. Blackburn, 1987. Sterols and fatty acids of the red tide flagellates Heterosigma akashiwo and Chattonella antiqua (Raphidophyceae). Phytochemistry 26: 2537–2541.

    Article  CAS  Google Scholar 

  • Oda, T., A. Ishimatsu, S. Takeshita & T. Muramatsu, 1994. Hydrogen peroxide production by the red tide flagellate Chattonella marina. Bioscience, Biotechnology and Biochemistry 58: 957–958.

    Article  CAS  Google Scholar 

  • Oda, T., A. Nakamura, M. Shikayama, I. Kawano, A. Ishimatsu & T. Muramatsu, 1997. Generation of reactive oxygen species by Raphidophycean phytoplankton. Bioscience, Biotechnology and Biochemistry 61: 1658–1662.

    Article  CAS  Google Scholar 

  • Ohkawa, H., N. Ohishi & K. Yagi, 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 331–358.

    Article  Google Scholar 

  • Okaichi, T., 1987. Red tides problems for aquaculture in Japan. In Dael, B., D. G. Baden, B. Mck. Barry, L. Edler, S. Fraga, I. R. Jenkinson, G. M. Hallegraeff & T. Okaichi (eds), The Problems of Toxic Red Dinoflagellate Blooms in Aquaculture. Sherkin Island, Ireland: 50–51.

  • Palenick, B., O. C. Zafiriou & F. M. M. Morel, 1987. Hydrogen peroxide production by a marine phytoplankter. Limnology and Oceanography 32: 1365–1369.

    Article  Google Scholar 

  • Persky, A. M., P. S. Green, L. C. Stubley, O. Howell, L. Zaulyanov, G. A. Brzaeau & J. W. Simpkins, 2000. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proceedings of the Society for Experimental Biology and Medicine 223: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Shen, M., J. Xu, T. Y. Tsang & D. W. T. Au, 2010. Toxicity comparison between Chattonella marina and Karenia brevis using marine medaka (Oryzias melastigma): evidence against the suspected ichtiotoxins of Chattonella marina. Chemosphere 80: 585–591.

    Google Scholar 

  • Tanaka, K., Y. Muto & M. Chimada, 1994. Generation of superoxide anion radicals by the marine phytoplankton organism Chattonella antiqua. Journal of Plankton Research 16: 161–169.

    Article  CAS  Google Scholar 

  • Tiffany, M. A., S. B. Barlow, V. E. Matey & S. H. Hulbert, 2001. Chattonella marina (Raphidophyceae), a potentially toxic alga in the Salton Sea, California. Hydrobiología 466: 187–194.

    Article  Google Scholar 

  • Tomas, C. R., A. M. Bridgers & M. D. Smith, 2002. Chattonella subsalsa Biechler. North Carolina Sea Grant College, Marine Phytoplankton Identication Series. UNC-SG-02-05.

  • Tomas, C. R., C. Ono, S. Yoshimatsu & J. Gobel, 2004. Chattonella verruculosa and related species from Japan, Europe (North Sea) and U.S. coastal waters: case of mistaken identity? In Steidinger, K. A., J. H. Landsberg, C. T. Tomas & G. A. Vargo (eds), Harmful Algae 2002 Florida State and Wildlife Conservation Commission. Florida Institute of Oceanography and IOC-UNESCO, St. Petersburg: 425.

    Google Scholar 

  • Twiner, M. C. & C. G. Trick, 2000. Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. Journal of Plankton Research 22: 1961–1975.

    Article  CAS  Google Scholar 

  • Zenteno-Savín, T., E. Clayton-Hernández & R. Elsner, 2002. Diving seals, are they a model for coping with oxidative stress? Comparative Biochemistry and Physiology 133C: 527–536.

    Google Scholar 

  • Zenteno-Savín, T., R. Saldierna & M. Ahuejote-Sandoval, 2006. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comparative Biochemistry and Physiology. Part C: Toxicology and Pharmacology 142(3–4): 301–308.

    Article  PubMed  Google Scholar 

  • Zenteno-Savín, T., E. Cortés-Jacinto, J. P. Vázquez-Medina & H. Villarreal-Colmenares, 2008. Oxidative damage in tissues of juvenile crayfish (Cherax quadricarinatus von Martens, 1868) fed different levels of proteins and lipid. Hidrobiológica 18: 147–154.

    Google Scholar 

  • Zhang, Y., F. Fu, E. Whereat, K. J. Coyne & D. A. Hutchins, 2006. Bottom-up controls on a mixed-species HAB assemblage: a comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae 5: 310–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ira Fogel of the Centro de Investigaciones Biológicas del Noroeste (CIBNOR) for editorial improvements. Research was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT Grant 61226 and SIP Grant 20110590). C.J.B.S. and A.M.L. are fellows of the Comisión de Operación y Fomento de Actividades Académicas (COFFA) and the Programa de Estímulos al Desempeño de los Investigadores (EDI) of the Instituto Politécnico Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Band-Schmidt.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Band-Schmidt, C.J., Martínez-López, A., Bustillos-Guzmán, J.J. et al. Morphology, biochemistry, and growth of raphidophyte strains from the Gulf of California. Hydrobiologia 693, 81–97 (2012). https://doi.org/10.1007/s10750-012-1088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1088-y

Keywords

Navigation