Skip to main content
Log in

Predicting the light attenuation coefficient through Secchi disk depth and beam attenuation coefficient in a large, shallow, freshwater lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The diffuse attenuation coefficient of photosynthetically active radiation (PAR) (400–700 nm) (K d(PAR)) is one of the most important optical properties of water. Our purpose was to create K d(PAR) prediction models from the Secchi disk depth (SDD) and beam attenuation coefficient of particulate and dissolved organic matter (C t−w(PAR), excluding pure water) in the PAR range. We compare their performance and prediction precision by using the determination coefficient (r 2), relative root mean square error (RRMSE), and mean relative error (MRE). Our dataset comprised 1,067 measurements, including K d(PAR), SDD, and C t−w(PAR) taken in shallow, eutrophic, Lake Taihu, China, from 2005 to 2010. The prediction models of K d(PAR) were based on the linear model with an intercept of zero, using the inverse SDD, and the nonlinear model using SDD. The linear model generated a slope of 1.369, which was not significantly different from 1.7, the index used worldwide, but significantly lower than the value of 2.26. The nonlinear model gave a slightly more reliable prediction of K d(PAR) with a r 2 of 0.804. Compared to the SDD, C t−w(PAR) was more significantly correlated to K d(PAR) based on the linear model, with a significantly higher r 2 and lower RMSE and RE. Considering the measurement simplicity of C t−w(PAR) and data acquisition feasibility from high-frequency autonomous buoys and satellites, our results demonstrated that this prediction model reliably estimates K d(PAR), and could be used to significantly expand optical observations in an environment where the conditions for underwater PAR measurement are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arst, H., T. Nõges, P. Nõges & B. Paavel, 2008. Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes. Hydrobiologia 599: 169–176.

    Article  CAS  Google Scholar 

  • Bracchini, L., A. M. Dattilo, V. Hull, S. A. Loiselle, A. Tognazzi & C. Rossi, 2009. Modelling upwelling irradiance using Secchi disk depth in lake ecosystems. Journal of Limnology 68: 83–91.

    Article  Google Scholar 

  • Davies-Colley, R. J. & W. N. Vant, 1988. Estimation of optical properties of water from Secchi disc depths. Journal of the American Water Resources Association 24: 1329–1335.

    Article  Google Scholar 

  • Doron, M., M. Babin, A. Mangin & O. Hembise, 2007. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. Journal of Geophysical Research 112: C06003.

    Article  Google Scholar 

  • Gallegos, C. L., P. J. Werdell & C. R. McClain, 2011. Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research 116: C00H08.

    Article  Google Scholar 

  • Havens, K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 493: 173–186.

    Article  Google Scholar 

  • Hill, P. S., E. Boss, J. P. Newgard, B. A. Law & T. G. Milligan, 2011. Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer. Journal of Geophysical Research 116: C02023.

    Article  Google Scholar 

  • Jakkila, J., M. Leppäranta, T. Kawamura, K. Shirasawa & K. Salonen, 2009. Radiation transfer and heat budget during the ice season in Lake Pääjärvi, Finland. Aquatic Ecology 43: 681–692.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Koenings, J. P. & J. A. Edmundson, 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbity. Limnology and Oceanography 36: 91–105.

    Article  Google Scholar 

  • Larson, G. L., R. L. Hoffman, B. R. Hargreaves & R. W. Collier, 2007. Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake. Hydrobiologia 574: 141–148.

    Article  Google Scholar 

  • Liu, W. C., 2005. Water column light attenuation estimation to simulate phytoplankton population in tidal estuary. Environmental Geology 49: 280–292.

    Article  CAS  Google Scholar 

  • Loiselle, S. A., L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi & C. Rossi, 2009. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. Journal of Photochemistry and Photobiology B: Biology 95: 129–137.

    Article  CAS  Google Scholar 

  • Lowe, E. F., L. E. Battoe, M. F. Coveney, C. L. Schelske, K. E. Havens, E. R. Marzolf & K. R. Reddy, 2001. The restoration of Lake Apopka in relation to alternative stable states. An alternative view to that of Bachmannet al. (1999). Hydrobiologia 448: 11–18.

    Article  CAS  Google Scholar 

  • Lund-Hansen, L. C., T. J. Andersen, M. H. Nielsen & M. Pejrup, 2010. Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer. Estuaries and Coasts 33: 1442–1451.

    Article  CAS  Google Scholar 

  • Montes-Hugo, M. A. & S. Alvarez-Borrego, 2005. Empirical relations to estimate underwater PAR attenuation in San Quintin Bay using Secchi depth and horizontal sighting range. Ciencias Marinas 31: 685–695.

    Google Scholar 

  • OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris.

  • Padial, A. A. & S. M. Thomaz, 2008. Prediction of the light attenuation coefficient through the Secchi disk depth: empirical modeling in two large Neotropical ecosystems. Limnology 9: 143–151.

    Article  Google Scholar 

  • Pérez, G. L., A. Torremorell, J. Bustingorry, R. Escaray, P. Pérez, M. Diéguez & H. Zagarese, 2010. Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica 40: 30–39.

    Article  Google Scholar 

  • Poole, H. H. & W. R. G. Atkins, 1929. Photoelectric measurements of submarine illumination throughout the year. Journal of the Marine Biological Association of the United Kingdom 16: 297–324.

    Article  Google Scholar 

  • Qin, B. Q., P. Z. Xu, Q. L. Wu, L. C. Luo & Y. L. Zhang, 2007. Environmental issues of Lake Taihu, China. Hydrobiologia 581: 3–14.

    Article  CAS  Google Scholar 

  • Steel, E. A. & S. Neuhauser, 2002. A comparison of methods for measuring water clarity. Journal of the North American Benthological Society 21: 326–335.

    Google Scholar 

  • Sun, D. Y., Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang & S. Q. Gong, 2010. Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China). Hydrobiologia 644: 337–349.

    Article  CAS  Google Scholar 

  • Tilzer, M. M., 1988. Secchi disk—chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia 162: 163–171.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic, Philadelphia.

    Google Scholar 

  • Zhang, Y. L., B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo & W. M. Chen, 2006. Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake. Science in China: Series D Earth Sciences 49: 114–125.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., B. Q. Qin & M. L. Liu, 2007a. Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003. Journal of Plankton Research 29: 707–719.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., B. Zhang, R. H. Ma, S. Feng & C. F. Le, 2007b. Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China. Fundamental and Applied Limnology 170: 11–19.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin & X. H. Liu, 2011. Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China. Photochemical and Photobiological Sciences 10: 469–482.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-QN312), the National Natural Science Foundation of China (Grant nos. 40825004, 40971252), and the Major Projects on Control and Rectification of Water Body Pollution (2011ZX07101–010). Taihu Laboratory of Lake Ecosystem Station provided the part SDD data. We especially thank G. W. Zhu, J. Ji, Z. J. Gong, J. S. Li, S. Feng for their help with field sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlin Zhang.

Additional information

Handling editor: David Philip Hamilton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, X., Yin, Y. et al. Predicting the light attenuation coefficient through Secchi disk depth and beam attenuation coefficient in a large, shallow, freshwater lake. Hydrobiologia 693, 29–37 (2012). https://doi.org/10.1007/s10750-012-1084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1084-2

Keywords

Navigation