Skip to main content
Log in

An optical method to assess water clarity in coastal waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m−1) and beam attenuation coefficient c (m−1). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1 %)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC-S:

Absorption and attenuation sensors

AOPs:

Apparent optical properties

BB9:

Backscattering sensors

CDOM:

Coloured dissolved organic matter

CTD:

Conductivity-temperature-depth

CV:

Coefficient of variation

FLNTU:

Turbidity and fluorescence chlorophyll sensors

IOPs:

Inherent optical properties

MRE:

Mean root error

NTU:

Nephelometric turbidity unit

RMSE:

Root mean square error

SAV:

Submerged aquatic vegetation

TSS:

Total suspended sediment

a(λ):

Absorption coefficient

a t  − a w :

Particulate absorption coefficient

b b :

Backscattering coefficient

c t  − c w :

Particulate attenuation coefficient

Z sd :

Secchi depth

K d :

Vertical diffuse attenuation coefficient

K d (PAR):

Diffuse attenuation coefficient for photosynthetically available radiation

c :

Beam attenuation coefficient

1/(c + K d ):

Length attenuation coefficient

ξ :

Correction factor

Γ :

Coupling coefficient

C 0 :

Inherent contrast of the disk (dimensionless)

C T :

Threshold contrast of the disk (dimensionless)

R 2 :

Correlation coefficient

References

  • Ahmed, S., Gilerson, A., Zhou, J., Ioannou, I., Hliang, S., Gross, B., & Moshary, F. (2007). The effect of reabsorption of chlorophyll fluorescence and elastic scattering in coastal waters on the efficacy of retrieval algorithms. 14(650), 676.

  • Arthi, S., & Shanmugam, P. (2013). A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements. Optics Express, 21(24), 30082–30106.

    Article  Google Scholar 

  • Arst, H., Maekivi, S., Lukk, T., & Herlivi, A. (1997). Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient. Limnology and Oceanography, 42(1), 379–385.

    Article  CAS  Google Scholar 

  • Baker, K.S., & Smith, R.C. (1980) Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance. Proceedings of the 6th Conference of Ocean Optics. (Monterey, California, SPIE), 60–63.

  • Balali, S., Hoseini, S. A., Ghorbani, R., & Balali, S. (2013). Correlation of chlorophyll-a with Secchi disk depth and water turbidity in the International Alma Gol Wetland, Iran. Middle-East Journal Scientific Research, 13(10), 1296–1301. doi:10.5829/idosi.mejsr.2013.13.10.1124.

    Google Scholar 

  • Ballestro, D. (1999). Remote sensing of vertically structured phytoplankton pigments. Topicos Meterologicos Y Oceanograficos, 6(1), 14–23.

    Google Scholar 

  • Barnes, B. B., Hu, C., Schaeffer, B. A., Lee, Z., Palandro, D. A., & Lehrter, J. C. (2013). MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: a new approach to remove bottom contamination. Journal of Remote Sensing of Environment, 134(2013), 377–391.

    Article  Google Scholar 

  • Berkman, J.A.H., & Canova, M.G. (2007). Algal biomass indicators. In: Myers, D.N., and Sylvester, M.D., National field manual for the collection of water-quality databiological indicators: US Geological Survey Techniques of Water-Resources Investigations, book 9. US Geological Survey TWRI, ABI1-ABI86.

  • Boss, E., Taylor, L., Gilbert, S., Gunderson, K., Hawley, N., Janzen, C., Johengen, T., Purcell, H., Robertson, C., Schar, W. H. D., Smith, J. G., & Tamburri, M. N. (2009a). Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnology and Oceanography: Methods 7, 11(2009), 803–810.

    Article  Google Scholar 

  • Boss, E., Slade, W. H., Behrenfeld, M., & Dall’Olmo, G. (2009b). Acceptance angle effects on the beam attenuation in the ocean. Optics Express, 17(3), 1535–1550.

    Article  Google Scholar 

  • Chen, Z., Hu, C., & Muller-Karger, F. E. (2007). Remote sensing of water clarity in Tampa Bay. Remote Sensing of Environment, 109(2), 249–259.

    Article  Google Scholar 

  • Cialdi, M., & Secchi, P. A. (1865). Sur la transparence de la mer. Computes Rendu l’Acadamie des Sciences, 61.

  • Collier, A., Finlayson, G. M., & Cake, E. W. (1968). On the transparency of the sea: observations made by Mr. Ciladi and P.A. Secchi. Limnology and Oceanography, 13, 391–394.

    Article  Google Scholar 

  • Cox, M. E., Moss, A., & Smyth, G. K. (2005). Water quality condition and trend in North Queensland waterways. Marine Pollution Bulletin, 51(1), 89–98.

    Article  CAS  Google Scholar 

  • Davies-Colley, R. J. (1988). Measuring water clarity with a black disk. Limnology and Oceanography, 33(4 part 1), 616–623.

    Article  Google Scholar 

  • Davies-Colley, R. J., Vant, W. N., & Smith, D. G. (2003). Colour and clarity of natural waters, science and management of optical water quality (310 p). Caldwell, New Jersey: Blackburn Press.

  • Devlin, M. J., Barry, J., Mills, D. K., Gowen, R. J., Foden, J., Sivyer, D., & Tett, P. (2008). Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Journal of Estuarine, Coastal and Shelf Science, 79(3), 429–439.

    Article  Google Scholar 

  • Doron, M., Babin, M., Mangin, A., & Hembise, O. (2007). Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. Journal of Geophysical Research, 112(C6), C06003. doi:10.1029/2006JC004007.

    Article  Google Scholar 

  • Duntley, S. Q. (1963). Light in the sea. Journal of the Optical Society of America, 53(1), 214–233.

    Article  Google Scholar 

  • Effler, S. W. (1988). Secchi disc transparency and turbidity. Journal of Environmental Enginnering, 114(6), 1436–1447.

    Article  Google Scholar 

  • Ellison, C. A., Richard, L. K., & James, D. F. (2010). Correlating stream flow, turbidity and suspended sediment concentration in Minnesota’s wild rice river. 2nd Joint Federal Interagency Conference (p. 10). NV: Las Vegas.

    Google Scholar 

  • Fleming-Lehtinen, V., & Laamanen, M. (2012). Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuarine, Coastal and Shelf Science, 102, 1–10.

    Article  Google Scholar 

  • Gallegos, C. L. (2001). Calculating optical water quality targets to restore and protect submersed aquatic vegetation: overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation. Estuaries, 24(3), 381–397.

    Article  CAS  Google Scholar 

  • Hǿjerslev, N.K. (1986) Visibility of the sea with special reference to the Secchi disc. Proceedings of the 8th Conference of Ocean Optics. (Orlando, Florida, USA, SPIE), pp 294–307.

  • Holmes, R. W. (1970). The Secchi disk in turbid coastal waters. Limnology and Oceanography, 15(5), 688–694.

    Article  Google Scholar 

  • Hou, W., Lee, Z., & Weidemann, A. D. (2007). Why does the Secchi disk disappear? An imaging prespective. Optics Express, 15(6), 2791–2802.

    Article  Google Scholar 

  • Jerlov, N. G. (1976). Marine optics (2nd ed., 227 p). Amsterdam: Elsevier Scientific Publishing Company.

  • Jiang, L., Zhao, D., & Wang, L. (2014). Backscattering properties of marine phytoplankton Prorocentrum micans. International Journal of Remote Sensing, 35(11–12), 4275–4286.

    Article  Google Scholar 

  • Karydis, M., & Kitsiou, D. (2013). Marine water quality monitoring: a review. Marine Pollution Bulletin, 77(1), 23–26.

    Article  CAS  Google Scholar 

  • Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems (2nd ed., 528 p). Cambridge: Cambridge University Press.

  • Kirk, J. T. O. (2003). The vertical attenuation of irradiance as a function of the optical properties of the water. Limnology and Oceanography, 48(1), 9–17.

    Article  Google Scholar 

  • Levin, I., Darecki, M., Sagan, S., & Radomyslskaya, T. (2013). Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem. Oceanologia, 55(1), 11–26. doi:10.5697/oc.55-1.011.

    Article  Google Scholar 

  • Marra, J., Langdon, C., & Knudson, C. A. (1995). Primary production, water column changes, and the demise of a phaeocystis bloom at the marine light-mixed layers site (59° N, 21° W) in the northeast Atlantic Ocean. Journal of Geophysical Research: Ocean, 100(C4), 6633–6643.

    Article  CAS  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  CAS  Google Scholar 

  • Mcclain, C. R., Arrigo, K., Tai, K. S., & Turk, D. (1996). Observation and simulations of physical and biological processes at ocean weather station P, 1951–1980. Journal of Geophysical Research, 101(C2), 3967–3713.

    Article  Google Scholar 

  • Mobley, C. D., & Mobley, C. D. (1994). Light and water: radiative transfer in natural waters (592 p). San Diego, California: Academic Press.

  • Ohde, T., & Siegel, H. (2003). Derivation of immersion factors for the hyperspectral TriOS radiance sensor. Journal of Optics A: Pure and Applied Optics, 5(3), 12–14.

    Article  Google Scholar 

  • Pan, X., & Zimmerman, R. C. (2010). Modeling the vertical distributions of downwelling plane irradiance and diffuse attenuation coefficient in optically deep waters. Journal of Geophysical Research, 115(C8), C08016. doi:10.1029/2009JC006039.

    Article  Google Scholar 

  • Pickard, G. L., & Emery, W. J. (1990). Descriptive physical oceanography: an introduction (264 p). Elsevier, Pergamon Press.

  • Pierson, D. C., Kratzer, S., Strömbeck, N., & Håkansson, B. (2008). Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sensing of Environment, 112(3), 668–680.

    Article  Google Scholar 

  • Pegau, W. S., Gray, D., & Zaneveld, J. R. (1997). Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Applied Optics, 36(24), 6035–6046.

    Article  CAS  Google Scholar 

  • Pegau, W. S., & Zaneveld, J. R. V. (1993). Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnology and Oceanography, 38(1), 188–192. doi:10.4319/lo.1993.38.1.0188.

    Article  CAS  Google Scholar 

  • Pravin, J. D., & Shanmugam, P. (2014). New model for subsurface irradiance reflectance in clear and turbid waters. Optics Express, 22(8), 9548–9566.

    Article  Google Scholar 

  • Preisendorfer, R. W. (1986). Secchi disk science: visual optics of natural waters. Limnology and Oceanography, 3(5), 909–926.

    Article  Google Scholar 

  • Quasim, S. Z. (2003). Indian estuaries. New Delhi: Allied Publishers (p) Ltd.

    Google Scholar 

  • Ronald, J., Zaneveld, V., Kitchen, J.C., & Moore, C. (1994). The scattering error correction of reflecting-tube absorption meters. Proceedings of the 12th Conference of Ocean Optics. (Bergen, Norway, SPIE), pp 44–55.

  • Selvaraj, K., Mohan, V. R., Jonathan, M. P., & Srinivasalu, M. P. (2005). Modification of a coastal environment: Vedaranniyam wetland, southeast coast of India. Journal of the Geological Society of India, 66(5), 535–538.

    Google Scholar 

  • Siegel, D.A., & Dickey, T.D. (1988). Characterization of downwelling spectral irradiance fluctuations. Proceedings of the 9th Conference of Ocean Optics. (Orlando, FL, USA, SPIE), pp 67–74.

  • Smith, D. G. (2001). A protocol for standardizing Secchi disk measurements, including use of a viewer box. Lake and Reservoir Management, 17(2), 90–96.

    Article  Google Scholar 

  • Steel, E. A., & Neuhausser, S. (2002). Comparison of methods for measuring visual water clarity. Journal of the North American Benthological Society, 21(2), 326–335.

    Article  Google Scholar 

  • Sundarabalan, B., Shanmugam, P., & Manjusha, S. (2013). Radiative transfer modeling of upwelling light field in coastal waters. Journal of Quantitative Spectroscopy and Radiative Transfer, 121(2013), 30–44. doi:10.1016/j.jqsrt.2013.01.016.

    Article  CAS  Google Scholar 

  • Suresh, T., Naik, P., Bandishte, M., Desa, E., Mascaranahas, A., & Matondkar, P.S.G. (2006). Secchi depth analysis using bio-optical parameters measured. Asia-Pacific Remote Sensing Symposium, International Society for Optics and Photonics. pp. 64061Q-1-64061Q-10. doi:10.1117/12.696251.

  • Swift, T. J., Perez-Losada, J., Schladow, S. G., Reuter, J. E., Jassby, A. D., & Goldman, C. R. (2006). Water clarity modeling in Lake Tahoe: linking suspended matter characteristics to Secchi depth. Aquatic Science, 68(1), 1–15. doi:10.1007/s00027-005-0798-x.

    Article  Google Scholar 

  • Tiwari, S. P., & Shanmugam, P. (2013). An optical model for deriving the spectral particulate backscattering coefficients in oceanic waters. Ocean Science Journal, 9(6), 987–1001. doi:10.5194/os-9-987-2013.

    Article  Google Scholar 

  • Tiwari, S. P., & Shanmugam, P. (2014). A robust algorithm to determine diffuse attenuation coefficient of downwelling irradiance from satellite data in coastal oceanic waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1616–1622.

    Article  Google Scholar 

  • Trees, C.C., Bissett, P.W., Dierssen, H., Kohler, D.D.R., Moline, M.A., Mueller, J.L., Pieper, R.E., Twardowski, M.S., & Zaneveld, J.R.V. (2005). Monitoring water transparency and diver visibility in ports and harbors using aircraft hyperspectral remote sensing. Proceedings of Conference of Photonics for Port and Harbor Security. (Orlando, Florida, USA, SPIE), pp 91–98 doi:10.1117/12.607554.

  • Tyler, J. E. (1968). The Secchi disc. Limnology and Oceanography, 13(1), 1–6.

    Article  Google Scholar 

  • Voss, K. J. (1992). A spectral model of the beam attenuation coefficient in the ocean and coastal areas. Limnology and Oceanography, 37(3), 501–509.

    Article  CAS  Google Scholar 

  • Zaneveld, J. R., & Pegau, W. (2003). Robust underwater visibility parameter. Optics Express, 11(23), 2997–3009.

    Article  Google Scholar 

  • Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2003). Empirical algorithms for Secchi disk depth using optical and microwave remote sensing data from the Gulf of Finland and the Archipelago Sea. Boreal Environmental Reseasrch, 8(3), 251–261.

    Google Scholar 

Download references

Acknowledgments

The present work was supported by the NRB and was carried out by the extensive support of IIT Madras, Chennai-600036. We would like to extend our earnest thanks to D. Rajshekhar, The Head, Vessel Management Cell (VMC) and the Director of National Institute of Ocean Technology (NIOT), for providing the coastal research vessels (SagarPaschimi and SagarPurvi) to IIT Madras for carrying out various underwater light field measurements during the cruises and develop the bio-optical models. We also thank scientists N. Ravi and K. Sashikumar for their timely arrangement of the vessel and the VMC members for their valuable on-board help during the in situ measurements. We sincerely thank two anonymous reviewers for their insightful comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanisamy Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshreshtha, A., Shanmugam, P. An optical method to assess water clarity in coastal waters. Environ Monit Assess 187, 742 (2015). https://doi.org/10.1007/s10661-015-4953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4953-0

Keywords

Navigation