Advertisement

Hydrobiologia

, Volume 684, Issue 1, pp 215–224 | Cite as

Selected coccal green algae are not affected by the humic substance Huminfeed® in term of growth or photosynthetic performance

  • Tobias HeinzeEmail author
  • Hanno Bährs
  • Matthias Gilbert
  • Christian E. W. Steinberg
  • Christian Wilhelm
Primary Research Paper

Abstract

Humic substances (HSs) have been shown to influence growth, photophysiology, and redox homeostasis in phototrophs. However, many ecological studies deliver controversial results indicating inhibitory or stimulating effects depending on the kind of phototrophic organism or type of HSs applied. Here we analyzed the effect of Huminfeed® (HF), a preparation from leonardite associated with lignite deposits, on growth and photosynthetic performance of three different coccal green algae. Concentrations of HF in the range of 2–20 mg l−1 dissolved organic carbon (DOC) did neither affect the growth rate nor the light-adapted photosynthetic electron transport. Even photoinhibitory light intensities of 1,600 μmol photons m−2 s−1, representing the tenfold of growth light intensity, did not result in a decline of the maximal photosynthetic rate in HF-treated algae. In HF-grown algae, a very subtle decrease by about 10% could be observed in thermoluminescent light emission, a sensitive method to detect changes in photosystem II (PSII) chemistry. However, thermoluminescence (TL) represents only 3% of the light-induced charge separated states in PSII. Hence, rather small changes will not have significant effects on overall photosynthetic performance and growth. Therefore, the physiological effect of HSs on freshwater phototrophs has to be revisited.

Keywords

Chlorophyll fluorescence Oxygen evolution Humic substances Oxidative stress Chlorophyceae Chlorococcales 

Abbreviations

Chl a

Chlorophyll a

DOC

Dissolved organic carbon

HF

Huminfeed®

HS

Humic substance

NOM

Natural organic matter

PSII

Photosystem II

rETR

Relative electron transport rate

TL

Thermoluminescence

Notes

Acknowledgments

The help given by some people of the stress ecology laboratory is gratefully acknowledged, particularly by Shumon Chakrabati for assisting the laboratory work, Andreas Nicklisch for general advices and Yvonne Pörs and Ulrich Schreiber for advices with the Phyto-PAM. We also thank the Deutsche Forschungsgemeinschaft (DFG) for supporting the scientific work (Grant Ste 673/17-1 and Wi 764/17-1).

References

  1. Allard, B. & J. Templier, 2000. Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54: 369–380.PubMedCrossRefGoogle Scholar
  2. Atkinson, A. W., B. E. S. Gunning & P. C. L. John, 1972. Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107: 1–32.CrossRefGoogle Scholar
  3. Costa, A. R. & M. N. de Pinho, 2002. The role of membrane morphology on ultrafiltration for natural organic matter removal. Desalination 145: 299–304.CrossRefGoogle Scholar
  4. Devol, A. H., A. Dos Santos, B. R. Forsberg & T. M. Zaret, 1984. Nutrient addition experiments in Lago Jacaretinga, Central Amazon, Brazil: 2. The effect of humic and fulvic acids. Hydrobiologia 109: 97–103.CrossRefGoogle Scholar
  5. Ducruet, J.-M., 2003. Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. Journal of Experimental Botany 54: 2419–2430.PubMedCrossRefGoogle Scholar
  6. Ducruet, J.-M. & I. Vass, 2009. Thermoluminescence: experimental. Photosynthesis Research 101: 195–204.PubMedCrossRefGoogle Scholar
  7. Eilers, P. H. C. & J. C. H. Peeters, 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42: 199–215.CrossRefGoogle Scholar
  8. Farjalla, V. F., A. M. Amado, A. L. Suhett & F. Meirelles-Pereira, 2009. DOC removal paradigms in highly humic aquatic ecosystems. Environmental Science and Pollution Research 16: 531–538.PubMedCrossRefGoogle Scholar
  9. Gilbert, M., H. Wagner, I. Weingart, J. Skotnica, K. Nieber, G. Tauer, F. Bergmann, H. Fischer & C. Wilhelm, 2004. A new type of thermoluminometer: a highly sensitive tool in applied photosynthesis research and plant stress physiology. Journal of Plant Physiology 161: 641–651.PubMedCrossRefGoogle Scholar
  10. Gjessing, E. T., J. J. Alberts, A. Bruchet, P. K. Egeberg, E. Lydersen, L. B. McGown, J. J. Mobed, U. Münster, J. Pempkowika, M. Perdue, H. Ratnawerra, D. Rybacki, M. Takacs & G. Abbt-Braun, 1998. Multi-method characterisation of natural organic matter isolated from water: characterisation of reverse osmosis-isolates from water of two semi-identical dystrophic lakes basins in Norway. Water Research 32: 3108–3124.CrossRefGoogle Scholar
  11. Gleason, F. K. & J. L. Paulson, 1984. Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp. Archives of Microbiology 138: 273–277.CrossRefGoogle Scholar
  12. Hegewald, E., A. Aldave & E. Schnepf, 1978. Investigations on the lakes of Peru and their phytoplankton, 2. The algae of pond La Laguna, Huanuco, with special reference to Scenedesmus intermedius and S. armatus. Archiv für Hydrobiologie 82: 207–215.Google Scholar
  13. Heil, C. A., 2005. Influence of humic, fulvic and hydrophilic acids on the growth, photosynthesis and respiration of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Harmful Algae 4: 603–618.CrossRefGoogle Scholar
  14. Humintech, 2011. Product information HuminFeed®. http://www.humintech.com/001/animalfeeds/products/huminfeed.html. Accessed July 2011.
  15. Imai, A., T. Fukushima & K. Matsushige, 1999. Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Canadian Journal of Fisheries and Aquatic Sciences 56: 1929–1937.Google Scholar
  16. Izawa, S., J. M. Gould, D. R. Ort, P. Felker & N. E. Good, 1973. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. III. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II. Biochimica et Biophysica Acta 305: 119–128.PubMedCrossRefGoogle Scholar
  17. Izawa, S., 1977. Inhibitors of electron transport. In Trebst, A. & M. Avron (eds), Encyclopedia of Plant Physiology, New Series, Vol. 5, Photosynthesis I. Springer, Berlin: 266–282.Google Scholar
  18. Jackson, T. A. & R. E. Hecky, 1980. Depression of primary productivity by humic matter in lake and reservoir water of the boreal forest zone. Canadian Journal of Fisheries and Aquatic Sciences 37: 2300–2317.CrossRefGoogle Scholar
  19. Karasyova, T. A., E. O. Klose, R. Menzel & C. E. W. Steinberg, 2007. Natural organic matter differently modulates growth of two closely related coccal green algal species. Environmental Science and Pollution Research 14: 88–93.PubMedCrossRefGoogle Scholar
  20. Kulikova, N. A., I. V. Perminova, G. A. Badun, M. G. Chernysheva, O. V. Koroleva & E. A. Tsvetkova, 2010. Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritium-labeled humic materials. Applied and Environmental Microbiology 76: 6223–6230.PubMedCrossRefGoogle Scholar
  21. Kullberg, A., K. H. Bishop, A. Hargeby, M. Jansson & R. C. Petersen Jr, 1993. The ecological significance of dissolved organic carbon in acidified waters. Ambio 22: 331–337.Google Scholar
  22. Leenheer, J. A. & C. E. Rostad, 2004. Tannins and terpenoids as major precursors of Suwannee River fulvic acids. U.S. Geological Survey Scientific Investigations Report 2004-5276: 16 pp.Google Scholar
  23. Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips & J. C. Woodward, 1996. Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448.CrossRefGoogle Scholar
  24. Maxwell, K. & G. N. Johnson, 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51: 659–668.PubMedCrossRefGoogle Scholar
  25. Meinelt, T., T. M. Phan, E. Zwirnmann, A. Krüger, A. Paul, A. Wienke & C. E. W. Steinberg, 2007. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substances of different origin. Aquatic Toxicology 83: 93–103.PubMedCrossRefGoogle Scholar
  26. Menzel, R., S. Stürzenbaum, A. Bärenwaldt, J. Kulas & C. E. W. Steinberg, 2005. Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environmental Science and Technology 39: 8324–8332.PubMedCrossRefGoogle Scholar
  27. Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410.PubMedCrossRefGoogle Scholar
  28. Münster, U., 1985. Investigation about structure, distribution and dynamics of different organic substrates in the DOM of lake Plusssee. Archiv für Hydrobiologie 70: 429–480.Google Scholar
  29. Nicklisch, A., T. Shatwell & J. Köhler, 2008. Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. Journal of Plankton Research 30: 75–91.CrossRefGoogle Scholar
  30. Oettmeier, W., R. Dostatni & H. J. Santel, 1987. Irreversibly binding photosynthetic electron transport inhibitors. II: halogen-substituted 1,4-naphthoquinones and halogenmethyl-1,4-quinones. Zeitschrift für Naturforschung 42c: 693–697.Google Scholar
  31. Oettmeier, W., K. Masson & A. Donner, 1988. Anthraquinone inhibitors of photosystem II electron transport. FEBS Letters 231: 259–262.CrossRefGoogle Scholar
  32. Oettmeier, W., R. Dostatni, C. Majewski, G. Höfle, T. Fecker, B. Kunze & H. Reichenbach, 1990. The aurachins, naturally occurring inhibitors of photosynthetic electron flow through photosystem II and the cytochrome b6/f-complex. Zeitschrift für Naturforschung 45c: 322–328.Google Scholar
  33. Pollio, A., G. Pinto, R. Ligrone & G. Aliotta, 1993. Effects of the potential allelochemical α-asarone on growth, physiology and ultrastructure of two unicellular green algae. Journal of Applied Phycology 5: 395–403.CrossRefGoogle Scholar
  34. Pörs, Y., A. Wüstenberg & R. Ehwald, 2010. A batch culture method for microalgae and cyanobacteria with CO2 supply through polyethylene membranes. Journal of Phycology 46: 825–830.CrossRefGoogle Scholar
  35. Prakash, A. & M. A. Rashid, 1968. Influence of humic substances on the growth of marine phytoplankton: Dinoflagellates. Limnology and Oceanography 13: 598–606.CrossRefGoogle Scholar
  36. Prakash, A., M. A. Rashid, A. Jensen & D. V. Subba Rao, 1973. Influence of humic substances on the growth of marine phytoplankton: Diatoms. Limnology and Oceanography 18: 516–524.CrossRefGoogle Scholar
  37. Prokhotskaya, V. Yu. & C. E. W. Steinberg, 2007. Differential sensitivity of a coccal green algal and a cyanobacterial species to dissolved natural organic matter (NOM). Environmental Science and Pollution Research 14: 11–18.CrossRefGoogle Scholar
  38. Richardson, K. & G. E. Fogg, 1982. The role of dissolved organic material in the nutrition and survival of marine dinoflagellates. Phycologia 21: 17–26.CrossRefGoogle Scholar
  39. Roháĉek, K., 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40: 13–29.CrossRefGoogle Scholar
  40. Sachse, A., D. Babenzien, G. Ginzel, J. Gelbrecht & C. E. W. Steinberg, 2001. Characterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen. Biogeochemistry 54: 279–296.CrossRefGoogle Scholar
  41. Sarvala, J., V. Ilmavirta, L. Paasivirta & K. Salonen, 1981. The ecosystem of the oligotrophic Lake Pääjärvi 3. Secondary production and an ecological energy budget of the lake. Verhandlungen des Internationalen Verein Limnologie 21: 422–427.Google Scholar
  42. Schreiber, U., W. Bilger & C. Neubauer, 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Schulze, E. D. & M. M. Caldwell (eds), Ecophysiology of Photosynthesis. Springer, Berlin: 49–70.Google Scholar
  43. Schreiber, U., 1998. Chlorophyll fluorescence: new instruments for special applications. In Garab, G. (ed.), Photosynthesis: Mechanisms and Effects, Vol. V. Kluwer Academic Publishers, Dordrecht: 4253–4258.Google Scholar
  44. Shapiro, J., 1957. Chemical and biological studies on the yellow organic acids of lake water. Limnology and Oceanography 2: l61–l179.Google Scholar
  45. Skulberg, O. M., 1967. Algal cultures as a means to assess the fertilizing influence of pollution. In Jaag, O. & H. Liebman (eds), Advances in Water Pollution Research. Water Pollution Control Federation, Washington: 113–138.Google Scholar
  46. Smith, G. D. & N. T. Doan, 1999. Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. Journal of Applied Phycology 11: 337–344.CrossRefGoogle Scholar
  47. Steinberg, C. E. W., 2003. Ecology of humic substances in freshwaters. Determinants from geochemistry to ecological niches. Springer, Berlin.Google Scholar
  48. Steinberg, C. E. W., A. Paul, S. Pflugmacher, T. Meinelt, R. Klöcking & C. Wiegand, 2003. Pure humic substances have the potential to act as xenobiotic chemicals - a review. Fresenius Environmental Bulletin 12: 391–401.Google Scholar
  49. Steinberg, C. E. W., S. Kamara, V. Yu. Prokhotskaya, L. Manusadžianas, T. Karasyova, M. A. Timofeyev, J. Zhang, A. Paul, T. Meinelt, V. F. Farjalla, A. Y. O. Matsuo, B. K. Burnison & R. Menzel, 2006. Dissolved humic substances - ecological driving forces from the individual to the ecosystem level? Freshwater Biolgy 51: 1189–1210.CrossRefGoogle Scholar
  50. Steinberg, C. E. W., N. Saul, K. Pietsch, T. Meinelt, S. Rienau & R. Menzel, 2007. Dissolved humic substances facilitate fish life in extreme aquatic environments and have the potential to extend lifespan of Caenorhabditis elegans. Annals of Environmental Science 1: 81–90.Google Scholar
  51. Steinberg, C. E. W., N. Ouerghemmi, S. Herrmann, R. Bouchnak, M. A. Timofeyev & R. Menzel, 2010. Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress and life-span extension, but reduced offspring numbers. Hydrobiologia 652: 223–236.CrossRefGoogle Scholar
  52. Suhett, A. L., A. M. Amado, A. Enrich-Prast, F. D. A. Esteves & V. F. Farjalla, 2007. Seasonal changes of dissolved organic carbon photo-oxidation rates in a tropical humic lagoon: the role of rainfall as a major regulator. Canadian Journal of Fisheries and Aquatic Sciences 64: 1266–1272.CrossRefGoogle Scholar
  53. Sun, B., Y. Tanji & H. Unno, 2006. Extinction of cells of cyanobacterium Anabaena circinalis in the presence of humic acid under light. Applied Microbiology and Biotechnology 72: 823–828.PubMedCrossRefGoogle Scholar
  54. Thurman, E. M., R. L. Wershaw, R. L. Malcolm & D. J. Pinckney, 1982. Molecular size of aquatic humic substances. Organic Geochemistry 4: 27–35.CrossRefGoogle Scholar
  55. Toledo, A. P. P., J. G. Tundisi & V. A. D’Aquino, 1980. Humic acid influence on the growth and copper tolerance of Chlorella sp. Hydrobiologia 71: 261–263.CrossRefGoogle Scholar
  56. Trebst, A., 1972. Measurement of Hill reactions and photoreduction. In San Pietro, A. (ed.), Methods in Enzymology, Vol. 24: Photosynthesis and Nitrogen Fixation - Part B. Academic Press, New York: 146–165.CrossRefGoogle Scholar
  57. Trebst, A., 1980. Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. In San Pietro, A. (ed.), Methods in Enzymology, Vol. 69: Photosynthesis and Nitrogen Fixation - Part C. Academic Press, New York: 675–715.CrossRefGoogle Scholar
  58. van Hoecke, K., K. A. C. De Schamphelaere, P. van der Meeren, S. Lucas & C. R. Janssen, 2008. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environmental Toxicology and Chemistry 27: 1948–1957.PubMedCrossRefGoogle Scholar
  59. Vavilin, D. V. & J.-M. Ducruet, 1998. The origin of 115–130°C thermoluminescence bands in chlorophyll-containing material. Photochemistry and Photobiology 68: 191–198.Google Scholar
  60. Vavilin, D. V., J.-M. Ducruet, D. N. Matorin, P. S. Venediktov & A. B. Rubin, 1998. Membrane lipid peroxidation, cell viability and photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions. Journal of Photochemistry and Photobiology B 42: 233–239.CrossRefGoogle Scholar
  61. Warburg, O. & W. Lüttgens, 1944. Weitere Experimente zur Kohlensäureassimilation. Die Naturwissenschaften 32: 301.CrossRefGoogle Scholar
  62. Wetzel, R. G., 2001. Limnology: Lake and river ecosystems, 3rd edn. Academic Press, San Diego.Google Scholar
  63. Ziegler, R. & K. Egle, 1965. Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyllbestimmung. Beiträge zur Biologie der Pflanzen 41: 11–37.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tobias Heinze
    • 1
    Email author
  • Hanno Bährs
    • 2
  • Matthias Gilbert
    • 1
  • Christian E. W. Steinberg
    • 2
  • Christian Wilhelm
    • 1
  1. 1.Department of Plant PhysiologyUniversity of Leipzig, Institute of BiologyLeipzigGermany
  2. 2.Department of BiologyHumboldt-Universität zu Berlin, Laboratory of Freshwater and Stress EcologyBerlinGermany

Personalised recommendations