Skip to main content

Advertisement

Log in

Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia

  • WETLAND SERVICES AND MANAGEMENT
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha−1 year−1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha−1 year−1, and N2O-N −0.05, −0.01, 0.18 and 0.19 kg ha−1 year−1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aerts, R., R. Logtestijn, M. Staalduinen & S. Toet, 1995. Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation. Oecologia 104(4): 447–453.

    Article  Google Scholar 

  • Alm, J., S. Saarnio, N. Nykanen, J. Silvola & P. J. Martikainen, 1999. Winter CO2, CH4 and N2O fluxes of some natural and drained peatlands. Biogeochemistry 44: 163–186.

    Google Scholar 

  • Alm, J., N. J. Shurpali, K. Minkkinen, L. Aro, J. Hytönen, T. Laurila, A. Lohila, M. Maljanen, P. J. Martikainen, P. Mäkiranta, T. Penttilä, S. Saarnio, N. Silvan, E.-S. Tuittila & J. Laine, 2007. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Environment Research 12: 191–209.

    CAS  Google Scholar 

  • Basiliko, N., C. P. Blodau, P. C. Bengtson, C. Roehm & T. R. Moore, 2007. Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10: 1148–1165.

    Article  CAS  Google Scholar 

  • Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss & C. Trettin, 2006. The carbon balance of North American wetlands. Wetlands 26: 889–916.

    Article  Google Scholar 

  • Bubier, J. L., T. R. Moore & S. Juggins, 1995. Predicting methane emission from bryophyte distribution in northern Canadian peatlands. Ecology 76: 677–693.

    Article  Google Scholar 

  • Bubier, J. L., G. Bhatia, T. R. Moore, N. T. Roulet & P. M. Lafleur, 2003. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6: 353–367.

    CAS  Google Scholar 

  • Cleary, J., N. T. Roulet & T. R. Moore, 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a life-cycle analysis. Ambio 34: 456–461.

    PubMed  Google Scholar 

  • Croft, M., L. Rochefort & C. J. Beauchamp, 2001. Vacuum-extraction of peatlands disturbs bacterial population and microbial biomass carbon. Applied Soil Ecology 18: 1–12.

    Article  Google Scholar 

  • Dinsmore, K. J., U. M. Skiba, M. F. Billett & R. M. Rees, 2009. Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil 318: 229–242.

    Article  CAS  Google Scholar 

  • Dinsmore, K. J., M. F. Billett, U. M. Skiba, R. M. Rees, J. Drewer & C. Helfter, 2010. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology 16: 2750–2762.

    Article  Google Scholar 

  • Gilmer, A. J., S. M. Ward, N. Holden, A. Brebreton & E. P. Farrell, 1998. Restoration peatland carbon sequestration model: an aid in carbon cycling research. In Malterer, T., K. Johnson & J. Stewart (eds), Peatland Restoration and Reclamation: Proceedings of the 1998 International Peat Symposium, Duluth (14–18 July). International Peat Society, Duluth, MN: 197–201.

    Google Scholar 

  • Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.

    Article  Google Scholar 

  • Gorham, E., 1995. The biogeochemistry of northern peatlands and its possible response to global warming. In Woodwell, G. M. & F. T. Mackenzie (eds), Biotic Feedback in the Global 129 Climate System: Will the Warming Feed the Warming?. Oxford University Press, New York: 169–187.

    Google Scholar 

  • Hayden, M. J. & D. S. Ross, 2005. Denitrification as a nitrogen removal mechanism in a Vermont peatland. Journal of Environment Quality 34: 2052–2061.

    Article  CAS  Google Scholar 

  • Hutchinson, G. L. & G. P. Livingston, 1993. Use of chamber systems to measure trace gas fluxes. In Harper, L. E., A. R. Mosier, J. M. Duxbury & D. E. Rolston (eds), Agricultural Ecosystems Effects on Trace Gases and Global Climate Change. ASA Special Publication No. 55. American Society of Agronomy, Madison, MI, USA: 1–55.

    Google Scholar 

  • Hyvönen, N. P., J. T. Huttunen, N. J. Shurpali, N. M. Tavi, M. E. Repo & P. J. Martikainen, 2009. Fluxes of nitrous oxide and methane on an abandoned peat extraction site: effect of reed canary grass cultivation. Bioresource Technology 100: 4723–4730.

    Article  PubMed  Google Scholar 

  • IPCC, 2001. The carbon cycle and atmospheric carbon dioxide. In Houghton, J. T., et al. (eds), Climate Change 2001: The Scientific Basis. Cambridge University Press, New York: 183–237.

    Google Scholar 

  • Kirkinen, J., K. Minkkinen, T. Penttilä, S. Kojola, R. Sievänen, J. Alm, S. Saarnio, N. Silvan, J. Laine & I. Savolainen, 2007. Greenhouse impact due to different peat fuel utilization chains in Finland – a life-cycle approach. Boreal Environment Research 12: 211–223.

    CAS  Google Scholar 

  • Koh, H. S., C. A. Ochs & K. Yu, 2009. Hydrologic gradient and vegetation controls on CH4 and CO2 fluxes in a spring-fed forested wetland. Hydrobiologia 630: 271–286.

    Article  CAS  Google Scholar 

  • Lai, D. Y. F., 2009. Methane dynamics in northern peatlands: a review. Pedosphere 19: 409–421.

    Article  CAS  Google Scholar 

  • Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykänen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo & P. J. Martikainen, 1996. Effect of water-level drawdown in global climatic warming: northern peatlands. Ambio 25: 179–184.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd English edn. Elsevier Science BV, Amsterdam, xv + 853 pp.

  • Loftfield, N., H. Flessa, J. Augustin & F. Beese, 1997. Automated gas chromatographic system for rapid analysis of the, atmospheric trace gases methane, carbon dioxide, and nitrous oxide. Journal of Environment Quality 26: 560–564.

    CAS  Google Scholar 

  • Mäkiranta, P., J. Hytönen, L. Aro, M. Maljanen, M. Pihlatie, H. Potila, N. J. Shurpali, J. Laine, A. Lohila, P. J. Martikainen & K. Minkkinen, 2007. Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands. Boreal Environment Research 12: 159–175.

    Google Scholar 

  • Martikainen, P. J., H. Nykänen, P. Crill & J. Silvola, 1993. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366: 51–53.

    Article  CAS  Google Scholar 

  • Martikainen, P. J., H. Nykänen, J. Alm & J. Silvola, 1995. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant and Soil 169(8): 571–577.

    Article  Google Scholar 

  • Minkkinen, K. & J. Laine, 2006. Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant and Soil 285: 289–304.

    Article  CAS  Google Scholar 

  • Minkkinen, K., R. Korhonen, I. Savolainen & J. Laine, 2002. Carbon balance and radiative forcing of Finnish peatlands 1900–2100 – the impact of forestry drainage. Global Change Biology 8: 785–799.

    Article  Google Scholar 

  • Moore, T., 1994. Trace gas emissions from Canadian peatlands and the effect of climatic-change. Wetlands 14: 223–228.

    Article  Google Scholar 

  • Moore, T. R. & M. Dalva, 1993. Influence of temperature and water table position on carbon dioxide and methane emissions from columns of peatland soils. Journal of Soil Science 44: 651–664.

    Article  CAS  Google Scholar 

  • Nilsson, M., C. Mikkelä, I. Sundh, G. Granberg, B. H. Svensson & B. Ranneby, 2001. Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. Journal of Geophysical Research 106(D18): 20847–20860.

    Article  CAS  Google Scholar 

  • Nykänen, H., J. Silvola, J. Alm & P. J. Martikainen, 1995. Emissions of CH4, CO2 and N2O from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography 22: 351–357.

    Article  Google Scholar 

  • Ojanen, P., K. Minkkinen & J. Alm, 2010. Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. Forest Ecology and Management 260: 411–421.

    Article  Google Scholar 

  • Orru, M., 1992. Estonian Peat Resources. Teaduste Akadeemia Kirjastus, Tallinn, Estonia (in Estonian).

  • Paal, J., 1997. Eesti taimkatte kasvukohatüüpide klassifikatsioon. Eesti Keskkonnaministeerium, ÜRO keskkonnaprogramm, Tallinn (in Estonian).

  • Pelletier, L., T. R. Moore, N. T. Roulet, M. Garneau & V. Beaulieu-Audy, 2007. Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. Journal of Geophysical Research 112: G01018.

    Article  Google Scholar 

  • Ramst, R. & M. Orru, 2009. Eesti mahajäetud turbatootmisalade taastaimestumine. Eesti Põlevloodusvarad ja -jäätmed 1–2: 6–7 (In Estonian).

  • Regina, K., H. Nykanen, J. Silvola & P. J. Martikainen, 1996. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35: 401–418.

    Article  CAS  Google Scholar 

  • Saarnio, S., M. Morero, N. J. Shurpali, E.-S. Tuittila, M. Mäkilä & J. Alm, 2007. Annual CO2 and CH4 fluxes of pristine boreal mires as a background for the lifecycle analyses of peat energy. Boreal Environment Research 12: 101–113.

    CAS  Google Scholar 

  • Salm, J.-O., K. Kimmel, V. Uri & Ü. Mander, 2009. Global warming potential of drained and undrained peatlands in Estonia: a synthesis. Wetlands 29: 1081–1092.

    Article  Google Scholar 

  • Segers, R., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1): 23–51.

    Article  CAS  Google Scholar 

  • Silvan, N., E. S. Tuittila, V. Kitunen, H. Vasander & J. Laine, 2005. Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored peatland. Soil Biology and Biochemistry 37: 1519–1526.

    Article  CAS  Google Scholar 

  • Soosaar, K., Ü. Mander, M. Maddison, A. Kanal, A. Kull, K. Lõhmus, J. Truu & A. Augustin, 2011. Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests. Ecological Engineering 37: 40–53.

    Article  Google Scholar 

  • Stanek, W. & T. Silc, 1977. Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Canadian Journal of Soil Science 57: 109–117.

    Article  Google Scholar 

  • Strakova, P., J. Anttila, P. Spetz, V. Kitunen, T. Tapanila & R. Laiho, 2010. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant and Soil 335: 501–520.

    Article  CAS  Google Scholar 

  • Sundh, I., M. Nilsson, C. Mikkelä & G. Granberg, 2000. Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29: 499–503.

    Google Scholar 

  • Tuittila, E. S., V. M. Komulainen, H. Vasander, H. Nykänen, P. Martikainen & J. Laine, 2000. Methane dynamics of a restored cut-away peatland. Global Change Biology 6: 569–581.

    Article  Google Scholar 

  • Turunen, J., E. Tomppo, K. Tolonen & A. Reinikainen, 2002. Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. Holocene 12: 69–80.

    Article  Google Scholar 

  • Vitt, D. H., L. A. Halsey, I. E. Bauer & C. Campbell, 2000. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences 37: 683–693.

    Article  CAS  Google Scholar 

  • Von Arnold, K., B. Hånell, J. Stendahl & L. Klemedtsson, 2005a. Greenhouse gas fluxes from drained organic forests land in Sweden. Scandinavian Journal of Forest Research 20: 400–411.

    Article  Google Scholar 

  • Von Arnold, K., M. Nilsson, M. Hånell, P. Weslien & L. Klemedtsson, 2005b. Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biology and Biochemistry 37: 1059–1071.

    Article  Google Scholar 

  • Waddington, J. M. & P. McNeil, 2002. Peat oxidation in an abandoned cutover peatland. Canadian Journal of Soil Science 82: 279–286.

    Article  CAS  Google Scholar 

  • Waddington, J. M., K. D. Warner & G. F. Kennedy, 2002. Cutover peatlands: a persistent source of atmospheric CO2. Global Biogeochemical Cycles 16: 1002. doi:10.10292001GB001398.

  • Waddington, J. M. & N. T. Roulet, 2000. Carbon balance of boreal patterned peatland. Global Change Biology 6: 87–97.

    Article  Google Scholar 

  • Waddington, J. M., P. A. Rotenberg & F. J. Warren, 2001. Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54: 115–130.

    Article  CAS  Google Scholar 

  • Werner, C., D. Kenneth, P. Bakwin, C. Yi, D. Hurts & L. Lock, 2003. Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. Global Change Biology 9: 1251–1261.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education and Science of Estonia (grant SF0180127s08), the Estonian Science Foundation (grant 7527), a grant EE0012 from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism and the Norwegian Financial Mechanism, and a grant through the IAEA Coordinated Research Project on Strategic Placement and Area-Wide Evaluation of Water Conservation Zones in Agricultural Catchments for Biomass Production, Water Quality and Food Security (D1.20.10). We are grateful for the assistance provided by the Institute of Ecology and Earth Sciences of the University of Tartu, especially Anto Aasa and Marko Kohv, AS Tootsi Turvas, the Estonian Environmental Board, especially Madis Oras and Meelis Leivits, and the Estonian Fund for Nature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jüri-Ott Salm.

Additional information

Guest editor: Chris B. Joyce / Wetland services and management

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salm, JO., Maddison, M., Tammik, S. et al. Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692, 41–55 (2012). https://doi.org/10.1007/s10750-011-0934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0934-7

Keywords

Navigation