Skip to main content
Log in

Development of optical criteria to discriminate various types of highly turbid lake waters

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Our aim was to refine the optical classification of turbid waters in order to improve the performance of water color algorithms. Bio-optical measurements and sampling of optically active substances were performed in highly turbid lakes Taihu, Chaohu, and Dianchi, and in Three Gorges reservoir in China. Based on strong correlations between trough depths of remote sensing reflectance (R rs(λ)) near 680 nm (denoted as TD680) and the ratios of inorganic suspended matter (ISM) to total suspended matter (TSM) concentrations, an empirical model was developed for water classification. In the 400–900 nm spectral range, different correlations between R rs(λ), TSM and chlorophyll a (Chla) concentrations indicate discrepancies among the following ISM/TSM ranges: ISM/TSM ≤ 0.5, 0.5 < ISM/TSM < 0.8, and ISM/TSM ≥ 0.8. Corresponding findings support an important conclusion that only high ISM/TSM ratios, usually above 0.5, and using the more sensitive and stable near infrared spectral range (730–820 nm), can assure good performances of the TSM remote sensing algorithms. Meanwhile, the particulate absorption a p(λ) and scattering b p(λ) were strongly influenced by different ranges of ISM/TSM ratios. Typically the a p(675) peaks became more and more vague as ISM/TSM increased, and the b p(λ) values first decreased and then increased with a marked inflexion at ISM/TSM ≈ 0.5. The TD680 threshold values were derived to discriminate three types of turbid waters, i.e., Type 1 (TD680 ≥ 0.0082 sr−1), Type 2 (0.0082 sr−1 > TD680 > 0 sr−1), and Type 3 (TD680 ≤ 0 sr−1). This study provides a promising tool for identifying various types of highly turbid waters, and is significant for the development of class-based algorithms of water color remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Arst, H. & A. Reinart, 2009. Application of optical classifications to North European lakes. Aquatic Ecology 43: 789–801.

    Article  CAS  Google Scholar 

  • Binding, C. E., D. G. Bowers & E. G. Mitchelson-Jacob, 2005. Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties. Remote Sensing of Environment 94: 373–383.

    Article  Google Scholar 

  • Boss, E., W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev & F. Baratange, 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research 109: C01014. doi:10.1029/2002JC001514.

  • Chen, Y. W., K. N. Chen & Y. H. Hu, 2006. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. Journal of Lake Science 18: 550–552.

    CAS  Google Scholar 

  • D’Alimonte, D., F. Mélin, G. Zibordi & J.-F. Berthon, 2003. Use of the novelty detection technique to identify the range of applicability of empirical ocean color algorithms. IEEE Transactions on Geoscience and Remote Sensing 41: 2833–2843.

    Article  Google Scholar 

  • D’Alimonte, D., G. Zibordi & J.-F. Berthon, 2007. A statistical index of bio-optical seawater types. IEEE Transactions on Geoscience and Remote Sensing 45: 2644–2651.

    Article  Google Scholar 

  • Dai, Y. N., S. J. Li & X. J. Wang, 2008. Measurement of analysis on the apparent optical properties of water in Chaohu Lake. China Environmental Science 28: 979–983.

    CAS  Google Scholar 

  • Dall’Olmo, G. & A. Gitelson, 2005. Effect of bio-optical parameter variability on the remote estimation of chlorophyll a concentration in turbid productive waters: experimental results. Applied Optics 44: 412–422.

    Article  PubMed  Google Scholar 

  • Dierssen, H. M., J. P. Ryan & R. C. Zimmerman, 2006. Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnology and Oceanography 51: 2646–2659.

    Article  Google Scholar 

  • Doxaran, D., J. Froidefond & P. Castaing, 2002a. A reflectance band ratio used to estimate suspended matter concentrations in sediment dominated coastal waters. International Journal of Remote Sensing 23: 5079–5085.

    Article  Google Scholar 

  • Doxaran, D., J. Froidefond, S. Lavender & P. Castaing, 2002b. Spectral signature of highly turbid waters; application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment 81: 149–161.

    Article  Google Scholar 

  • Feng, N., F. Mao, X. Y. Li & A. D. Zhang, 2010. Research on ecological security assessment of Dian Lake. Environmental Science 31: 282–286.

    Google Scholar 

  • Garver, S. A. & D. A. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea. Journal of Geophysical Research 102: 18607–18625.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., 1992. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing 13: 3367–3373.

    Article  Google Scholar 

  • Gitelson, A. A., J. F. Schalles & C. M. Hladik, 2007. Remote chlorophyll a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment 109: 464–472.

    Article  Google Scholar 

  • Gitelson, A. A., G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin & J. Holz, 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment 112: 3582–3593.

    Article  Google Scholar 

  • Gordon, H. R., 1979. Diffusive reflectance of the ocean: the theory of its augmentation by chlorophyll-a fluorescence at 685 nm. Applied Optics 18: 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, H. R. & A. Morel, 1983. Remote Assessment of Ocean Color Interpretation of Satellite Visible Imagery. Springer-Verlag, New York.

    Google Scholar 

  • Gordon, H. R., O. B. Brown & M. M. Jacobs, 1975. Computed relationship between the inherent and apparent optical properties of a flat, homogeneous ocean. Applied Optics 14: 417–427.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker & D. K. Clark, 1988. A semi-analytic radiance model of ocean color. Journal of Geophysical Research D93: 10909–10924.

    Article  Google Scholar 

  • Gower, J. F. R., R. Doerffer & G. A. Borstad, 1999. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. International Journal of Remote Sensing 20: 1771–1786.

    Article  Google Scholar 

  • Gower, J. F. R., S. King, G. Borstad & L. Brown, 2005. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing 26: 2005–2012.

    Article  Google Scholar 

  • Gower, J., S. King & P. Gonclaves, 2008. Global monitoring of plankton blooms using MERIS MCI. International Journal of Remote Sensing 29: 6209–6216.

    Article  Google Scholar 

  • Huang, X., 1999. Eco-Investigation, Observation and Analysis of Lakes. Standard Press of China, Beijing, China: 77–99.

    Google Scholar 

  • IOCCG, 2000. Remote sensing of ocean color in coastal, and other optically complex, waters, report number 3. In Stuart, V. (ed.), Reports of the International Ocean-Colour Coordinating Group. Nova Scotia, Dartmouth, Canada: 1–139.

    Google Scholar 

  • Le, C. F., Y. M. Li, Y. Zha, D. Y. Sun, C. H. Huang & H. Lu, 2009. A four-band semianalytical model for estimating chlorophyll a in highly turbid lakes: the case of Taihu Lake, China. Remote Sensing of Environment 113: 1175–1182.

    Article  Google Scholar 

  • Lee, Z. P., K. L. Carder, C. D. Mobley, R. G. Steward & J. S. Patch, 1998. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics 37: 6329–6338.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Z. P., K. L. Carder & R. Arnone, 2002. Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters. Applied Optics 41: 5755–5772.

    Article  PubMed  Google Scholar 

  • Loisel, H. & A. Morel, 1998. Light scattering and chlorophyll concentration in Case 1 waters: a reexamination. Limnology and Oceanography 43: 847–858.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Maritorena, S., D. A. Siegel & A. Peterson, 2002. Optimization of a semi-analytical ocean color model for global applications. Applied Optics 41: 2705–2714.

    Article  PubMed  Google Scholar 

  • Mckee, D. & A. Cunningham, 2006. Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents. Estuarine, Coastal and Shelf Science 68: 305–316.

    Article  CAS  Google Scholar 

  • Mckee, D., A. Cunningham & A. Dudek, 2007. Optical water type discrimination and tuning remote sensing band-ratio algorithms: application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas. Estuarine, Coastal and Shelf Science 73: 827–834.

    Article  Google Scholar 

  • Mitchell, B. G., 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). SPIE 1302: 137–148.

    Article  Google Scholar 

  • Moore, G. F., J. Aiken & S. J. Lavender, 1999. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS. International Journal of Remote Sensing 20: 1713–1733.

    Article  Google Scholar 

  • Moore, C., A. Barnard & D. Hankins, 2004. Spectral Absorption and Attenuation Meter (ac-s) User’s Guide Revision A. WET Labs Inc., America: 5–20.

    Google Scholar 

  • Morel, A., 2009. Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? Journal of Geophysical Research 114: C01016. doi:10.1029/2008JC004803.

    Article  Google Scholar 

  • Morel, A. & S. Bélanger, 2006. Improved detection of turbid waters from ocean color sensors information. Remote Sensing of Environment 102: 237–249.

    Article  Google Scholar 

  • Morel, A. & B. Gentili, 1993. Diffuse reflectance of oceanic waters. II. Bidirectional aspects. Applied Optics 32: 6864–6879.

    Article  PubMed  CAS  Google Scholar 

  • Morel, A. & B. Gentili, 2008. Practical application of the “turbid water” flag in ocean color imagery: interference with sun-glint contaminated pixels in open ocean. Remote Sensing of Environment 112: 934–938.

    Article  Google Scholar 

  • Morel, A. & S. Maritorena, 2001. Bio-optical properties of oceanic waters: a reappraisal. Journal of Geophysical Research 106: 7163–7180.

    Article  Google Scholar 

  • Morel, A. & L. Prieur, 1977. Analysis of variations in ocean colour. Limnology and Oceanography 22: 709–722.

    Article  Google Scholar 

  • Morel, A., Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker & B. A. Franz, 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sensing of Environment 111: 69–88.

    Article  Google Scholar 

  • Mueller, J. L., A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter & K. Voss, 2003. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. III. Radiometric Measurements and Data Analysis Protocols. Greenbelt, Maryland.

    Google Scholar 

  • Nechad, B., K. G. Ruddick & Y. Park, 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment 114: 854–866.

    Article  Google Scholar 

  • O’Reilly, J., S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru & C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWIFS. Journal of Geophysical Research 103: 24937–24953.

    Article  Google Scholar 

  • O’Reilly, J. E., S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, et al., 2000. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2, and OC4: version 4. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, NASA/TM 206892, Vol. 11: 9–23.

  • Ouillon, S., P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouёt & A. Muñoz-Caravaca, 2008. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors 8: 4165–4185.

    Article  CAS  Google Scholar 

  • Prieur, L. & S. Sathyendranath, 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and Oceanography 26: 671–689.

    Article  Google Scholar 

  • Qin, B. Q., W. P. Hu & W. M. Chen, 2004. The Process and Mechanism of Water Environment Evolvement in Taihu Lake. Science Press, Beijing, China.

    Google Scholar 

  • Reinart, A., A. Herlevi, H. Arst & L. Sipelgas, 2003. Preliminary optical classification of lakes and coastal waters in Estonia and South-Finland. Journal of Sea Research 49: 357–366.

    Article  Google Scholar 

  • Roesler, C. S. & M. J. Perry, 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. Journal of Geophysical Research 100(C7): 13279–13294.

    Article  Google Scholar 

  • Roesler, C. S., M. J. Perry & K. L. Carder, 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnology and Oceanography 34: 1510–1523.

    Article  CAS  Google Scholar 

  • Ruddick, K. G., V. D. Cauwer & Y.-J. Park, 2006. Seaborne measurements of near infrared water-leaving reflectance: the similarity spectrum for turbid waters. Limnology and Oceanography 51: 1167–1179.

    Article  Google Scholar 

  • Sagan, S., A. Weeks, I. Robinson, G. Moore & J. Aiken, 1995. The relationship between beam attenuation and chlorophyll concentration and reflectance in Antartic waters. Deep Sea Research II 42: 983–996.

    Article  CAS  Google Scholar 

  • Sullivan, J. M., M. S. Twardowski, P. L. Donaghay & S. A. Freeman, 2005. Use of optical scattering to discriminate particle types in coastal waters. Applied Optics 44: 1667–1680.

    Article  PubMed  Google Scholar 

  • Sun, D. Y., Y. M. Li, Q. Wang, C. F. Le, C. C. Huang & L. Z. Wang, 2009a. Parameterization of water component absorption in inland entrophic lake and its seasonal variability, a case study in Lake Taihu. International Journal of Remote Sensing 30: 3549–3571.

    Article  Google Scholar 

  • Sun, D. Y., Y. M. Li, Q. Wang, J. Gao, H. Lv, C. F. Le & C. C. Huang, 2009b. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu. Applied Optics 11: 1979–1989.

    Article  Google Scholar 

  • Sun, D. Y., Y. M. Li & Q. Wang, 2009c. A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 47: 2957–2965.

    Article  Google Scholar 

  • Sun, D. Y., Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang & S. Q. Gong, 2010. Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China). Hydrobiologia 644: 337–349.

    Article  CAS  Google Scholar 

  • Tang, J. W., G. L. Tian, X. Y. Wang, X. M. Wang & Q. J. Song, 2004. Methods of water spectra measurement and analysis I: above water method. Journal of Remote Sensing 8: 37–44.

    Google Scholar 

  • Tassan, S., 1994. Local algorithm using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics 33: 2369–2378.

    Article  PubMed  CAS  Google Scholar 

  • Tassan, S. & G. M. Ferrari, 2003. Variability of light absorption by aquatic particles in the near-infrared spectral region. Applied Optics 24: 4802–4810.

    Article  Google Scholar 

  • Twardowski, M. S., E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard & J. R. V. Zaneveld, 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research 106: 14129–14142.

    Article  CAS  Google Scholar 

  • Tzortziou, M., J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding Jr & Z. Ahmad, 2006. Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuarine, Coastal and Shelf Science 68: 348–362.

    Article  Google Scholar 

  • Vasilkov, A. & O. Kopelevich, 1982. Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer. Oceanology 22: 697–701.

    Google Scholar 

  • Wang, J. & G. F. Cota, 2003. Remote-sensing reflectance in the Beaufort and Chukchi seas: observations and models. Applied Optics 42: 2754–2765.

    Article  PubMed  Google Scholar 

  • Wang, Y. H., S. M. Qian, N. N. Xu, X. C. Jin, J. Huang & Q. H. Zhao, 2004. Characteristics of distribution of pollutants and evaluation in sediment in the east area of Chaohu Lake. Research of Environmental Sciences 17: 22–26.

    Google Scholar 

  • Yacobi, Y. Z., A. Gitelson & M. Mayo, 1995. Remote sensing of chlorophyll in Lake Kinneret using high spectra resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research 17: 2155–2173.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., B. Q. Qin, W. M. Chen & L. C. Luo, 2004. A study on total suspended matter in Lake Taihu. Resources and Environment in the Yangtze Basin 13: 266–271.

    Google Scholar 

  • Zhang, Y. L., B. Q. Qin & L. Y. Yang, 2006. Spectral absorption coefficients of particulate matter and chromophoric dissolved organic matter in Meiliang Bay of Lake Taihu. ACTA Ecologica Sinica 26: 3969–3979.

    CAS  Google Scholar 

  • Zhang, B., J. S. Li, Q. Shen & D. Chen, 2008. A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance. Environmental Monitoring Assessment 145: 339–347.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., M. L. Liu, B. Q. Qin, J. V. D. W. Hendrik, J. S. Li & Y. L. Li, 2009. Modeling remote sensing reflectance and retrieving chlorophyll a concentration in extremely turbid Case-2 waters (Lake Taihu, China). IEEE Transactions on Geoscience and Remote Sensing 47: 1937–1948.

    Article  Google Scholar 

  • Zimba, P. V. & A. A. Gitelson, 2006. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: model tuning and accuracy optimization. Aquaculture 256: 272–286.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Natural Science Foundations (No. 40971215), a National Science and Technology Support Project (No. 2008BAC34B05) of China. Additional financial support was received from the Foundation of Graduate Innovation Training plan of Jiangsu Province (No. CX08B_015Z) and excellent thesis cultivation fund of Nanjing Normal University (No. 181200000220). Yu Yang, Rui Xia, Xin Jin, Yanfei Wang, Bing Yin, Hong Zhang, Yifan Xu, Zhonghua Liu, and Xin Xu are acknowledged for their participation in the field experiment. We thank two anonymous reviewers for their critical and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyong Sun.

Additional information

Handling editor: P. Noges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, D., Li, Y., Wang, Q. et al. Development of optical criteria to discriminate various types of highly turbid lake waters. Hydrobiologia 669, 83–104 (2011). https://doi.org/10.1007/s10750-011-0652-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0652-1

Keywords

Navigation