Skip to main content
Log in

A Bio-optical Numerical Approach for Remote Retrieval of Total Suspended Matter from Turbid Waters

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A novel semi-analytical algorithm was developed to retrieve total suspended matter (TSM) in turbid waters. A turbidity index developed from remote sensing reflectance (\(R_{{{\text{rs}}}}\)) of three bands of visible spectrum was employed to estimate TSM. Adopting a partial differentiation approach, wavelength \(\lambda_{1}\) at which maximum absorption of TSM was identified between 650 nm and 750 nm. The second (\(\lambda_{2}\)) and third (\(\lambda_{3}\)) wavelengths were identified through radiative transfer modelling and parameterization of particulate backscattering to minimize the effect of other optically active substances and account for backscattering effects, respectively. Thus, the wavelengths identified were 679 nm (\(\lambda_{1}\)), 695 nm (\(\lambda_{2}\)), and 704 nm (\(\lambda_{3}\)). Regressing the index with 50 randomly chosen in situ data points (Zuary River estuary, Goa) resulted in a best-fit polynomial form of algorithm. This algorithm was validated with a different set of in situ data points (n = 116), and resulted in a correlation coefficient, r = 0.88. In addition, a comparative analysis of the developed algorithm with forty-one empirical and semi-analytical models of TSM indicated their non-suitability in varying optical conditions. The study further pointed out the significance of 695 nm as an inseparable band of any future optical sensor to retrieve TSM from remotely sensed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Austin, Å. N., Hansen, J. P., Donadi, S., & Eklöf, J. S. (2017). Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales. PLoS ONE, 12(8), e0181419. https://doi.org/10.1371/journal.pone.0181419

    Article  Google Scholar 

  • Binding, C. E., Bowers, D. G., & Mitchelson-Jacob, E. G. (2005). Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; The impact of variable particle scattering properties. Remote Sensing of Environment, 94(3), 373–383. https://doi.org/10.1016/j.rse.2004.11.002

    Article  Google Scholar 

  • Boss, E., Pegau, W. S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G., & Baratange, F. (2004). Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research: Oceans, 109(1), C01014. https://doi.org/10.1029/2002jc001514

    Article  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. H. (1968). A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada, Bulletin 167, 293 pp.

  • Chen, S., Han, L., Chen, X., Li, D., Sun, L., & Li, Y. (2015). Estimating wide range total suspended solids concentrations from MODIS 250-m imageries: An improved method. ISPRS Journal of Photogrammetry and Remote Sensing, 99, 58–69. https://doi.org/10.1016/j.isprsjprs.2014.10.006

    Article  Google Scholar 

  • Chen, Z., Curran, P. J., & Hansom, J. D. (1992). Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sensing of Environment, 40(1), 67–77. https://doi.org/10.1016/0034-4257(92)90127-6

    Article  Google Scholar 

  • Choi, J. K., Park, Y. J., Lee, B. R., Eom, J., Moon, J. E., & Ryu, J. H. (2014). Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sensing of Environment, 146, 24–35. https://doi.org/10.1016/J.RSE.2013.05.032

    Article  Google Scholar 

  • Chu, V. W., Smith, L. C., Rennermalm, A. K., Forster, R. R., Box, J. E., & Reeh, N. (2009). Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. Journal of Glaciology, 55(194), 1072–1082. https://doi.org/10.3189/002214309790794904

    Article  Google Scholar 

  • Cui, L., Qiu, Y., Fei, T., Liu, Y., & Guofeng, Wu. (2013). Using remotely sensed suspended sediment concentration variation to improve management of Poyang Lake, China. Lake and Reservoir Management, 29(1), 47–60. https://doi.org/10.1080/10402381.2013.768733

    Article  Google Scholar 

  • Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2002). Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data, 23(1), 15–35. https://doi.org/10.1080/01431160010006917.

  • Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Science of the Total Environment, 268(1–3), 197–214. https://doi.org/10.1016/S0048-9697(00)00679-3

    Article  Google Scholar 

  • Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., & Knaeps, E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sensing of Environment, 156, 157–168. https://doi.org/10.1016/j.rse.2014.09.020

    Article  Google Scholar 

  • Dorji, P., Fearns, P., & Broomhall, M. (2016). A semi-analytic model for estimating total suspended sediment concentration in turbid coastal waters of Northern Western Australia Using MODIS-Aqua 250 m Data. Remote Sensing, 8(7), 556. https://doi.org/10.3390/RS8070556.

  • Doxaran, D., Cherukuru, N., & Lavender, S. J. (2006). Apparent and inherent optical properties of turbid estuarine waters: Measurements, empirical quantification relationships, and modeling. Applied Optics, 45(10), 2310–2324. https://doi.org/10.1364/AO.45.002310

    Article  Google Scholar 

  • Eleveld, M. A., Van der Wal, D., & Van Kessel, T. (2014). Estuarine suspended particulate matter concentrations from sun-synchronous satellite remote sensing: Tidal and meteorological effects and biases. Remote Sensing of Environment, 143, 204–215. https://doi.org/10.1016/j.rse.2013.12.019

    Article  Google Scholar 

  • Feng, L., Hu, C., Chen, X., & Song, Q. (2014). Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sensing of Environment, 140, 779–788. https://doi.org/10.1016/j.rse.2013.10.002

    Article  Google Scholar 

  • Fettweis, M., Francken, F., Pison, V., & Van den Eynde, D. (2006). Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Marine Geology, 235(1–4 SPEC. ISS.), 63–74. https://doi.org/10.1016/j.margeo.2006.10.005.

  • Gitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Gurlin, D., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593. https://doi.org/10.1016/j.rse.2008.04.015.

  • Gordon, H. R. (1988). A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93(D9), 10909–10924. https://doi.org/10.1029/JD093iD09p10909

    Article  Google Scholar 

  • Gordon, H. R., Brown, O. B., & Jacobs, M. M. (1975). Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, 14(2), 417. https://doi.org/10.1364/ao.14.000417

    Article  Google Scholar 

  • Green, S. A., & Blough, N. V. (1994). Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 39(8), 1903–1916. https://doi.org/10.4319/lo.1994.39.8.1903

    Article  Google Scholar 

  • Jiang, X., Tang, J., Zhang, M., Ma, R., & Ding, J. (2009). Application of MODIS data in monitoring suspended sediment of Taihu Lake, China. Chinese Journal of Oceanology and Limnology, 27(3), 614–620. https://doi.org/10.1007/S00343-009-9160-9.

  • Joseph, J. (1950). Untersuchungen über Ober- und Unterlichtmessungen im Meere und über ihren Zusammenhang mit Durchsichtigkeitsmessungen. Deutsche Hydrographische Zeitschrift, 3(5–6), 324–335. https://doi.org/10.1007/BF02306834

    Article  Google Scholar 

  • Katlane, R., Nechad, B., Ruddick, K., & Zargouni, F. (2013). Optical remote sensing of turbidity and total suspended matter in the Gulf of Gabes. Arabian Journal of Geosciences, 6(5), 1527–1535. https://doi.org/10.1007/S12517-011-0438-9

    Article  Google Scholar 

  • Kazemzadeh, M. B., Ayyoubzadeh, S. A., & Moridnezhad, A. (2013). Remote sensing of temporal and spatial variations of suspended sediment concentration in Bahmanshir Estuary, Iran. Indian Journal of Science and Technology, 6(8), 1–10. https://doi.org/10.17485/IJST/2013/V6I8.10.

  • Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K., & Sterckx, S. (2012). In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary. Remote Sensing of Environment, 120, 133–144. https://doi.org/10.1016/j.rse.2011.07.025

    Article  Google Scholar 

  • Kong, J., Sun, X., Wang, W., Du, D., Chen, Y., & Yang, J. (2015). An optimal model for estimating suspended sediment concentration from Landsat TM images in the Caofeidian coastal waters, 36(19–20), 5257–5272. https://doi.org/10.1080/01431161.2015.1043159.

  • Kowalczuk, P., & Kaczmarek, S. (1996). Analysis of temporal and spatial variability of “yellow substance” absorption in the southern Baltic. Oceanologia, 38(1), 3–32.

    Google Scholar 

  • Kumar, A., Equeenuddin, S. M., Mishra, D. R., & Acharya, B. C. (2016). Remote monitoring of sediment dynamics in a coastal lagoon: Long-term spatio-temporal variability of suspended sediment in Chilika. Estuarine, Coastal and Shelf Science, 170, 155–172. https://doi.org/10.1016/J.ECSS.2016.01.018

    Article  Google Scholar 

  • Kutser, T., Metsamaa, L., Vahtmäe, E., & Aps, R. (2007). Operative monitoring of the extent of dredging plumes in coastal ecosystems using MODIS satellite imagery. Journal of Coastal Research, 180–184. http://www.jstor.org/stable/26481579.

  • Landajo, A., Arana, G., De Diego, A., Etxebarria, N., Zuloaga, O., & Amouroux, D. (2004). Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES. Chemosphere, 56(11), 1033–1041. https://doi.org/10.1016/j.chemosphere.2004.06.005

    Article  Google Scholar 

  • Lathrop, R. G., Lillesand, T. M., & Yandell, B. S. (1991). Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters, 12(10), 2045–2063. https://doi.org/10.1080/01431169108955235.

  • Lee, Z., Shang, S., Chen, J., Lin, G., & Doxaran, D. (2016). On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain. Applied Optics, 55(7), 1738–1750. https://doi.org/10.1364/AO.55.001738.

  • Liu, Q., & Rossiter, D. G. (2008). Estimation on suspended sedimentation concentration of Poyang Lake using MODIS and hyperspectral data. Remote Sensing Technol. Appl., 23(1), 7–11.

    Google Scholar 

  • Lu, J., Chen, X., Tian, L., & Zhang, W. (2014). Numerical simulation-aided MODIS capture of sediment transport for the Bohai Sea in China. International Journal of Remote Sensing, 35(11–12), 4225–4238. https://doi.org/10.1080/01431161.2014.916045.

    Article  Google Scholar 

  • Martins, V. S., Novo, E. M. L. M., Lyapustin, A., Aragão, L. E. O. C., Freitas, S. R., & Barbosa, C. C. F. (2018). Seasonal and interannual assessment of cloud cover and atmospheric constituents across the Amazon (2000–2015): Insights for remote sensing and climate analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 309–327. https://doi.org/10.1016/j.isprsjprs.2018.05.013.

    Article  Google Scholar 

  • Menon, H. B. (2004). Calibration of an optical equation to analyse the atmospheric turbidity and water quality of an estuarine environment. Journal of the Indian Society of Remote Sensing, 32(3), 287–300. https://doi.org/10.1007/BF03030888

    Article  Google Scholar 

  • Menon, H. B., & Adhikari, A. (2018). Remote sensing of chlorophyll-A in case II waters: A novel approach with improved accuracy over widely implemented turbid water indices. Journal of Geophysical Research: Oceans, 123(11), 8138–8158. https://doi.org/10.1029/2018JC014052

    Article  Google Scholar 

  • Miller, R. L., & McKee, B. A. (2004). Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment, 93(1–2), 259–266. https://doi.org/10.1016/j.rse.2004.07.012

    Article  Google Scholar 

  • Min, J. E., Ryu, J. H., Lee, S., & Son, S. H. (2012). Monitoring of suspended sediment variation using Landsat and MODIS in the Saemangeum coastal area of Korea. Marine Pollution Bulletin, 64(2), 382–390. https://doi.org/10.1016/J.MARPOLBUL.2011.10.025

    Article  Google Scholar 

  • Mobley, C. D. (1994). Optical Properties Of Water. Light and Waters: Radiative Transfer in Natural Waters. https://doi.org/10.1016/B978-012370626-3.00069-7.

  • Myint, S. W., & Walker, N. D. (2002). Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and Sea WiFS measurements: Louisiana, USA. International Journal of Remote Sensing, 23(16), 3229–3249. https://doi.org/10.1080/01431160110104700

    Article  Google Scholar 

  • Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854–866. https://doi.org/10.1016/j.rse.2009.11.022

    Article  Google Scholar 

  • Odermatt, D., Gitelson, A., Brando, V. E., & Schaepman, M. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sensing of Environment, 118(2012), 116–126. https://doi.org/10.1016/j.rse.2011.11.013

    Article  Google Scholar 

  • Ondrusek, M., Stengel, E., Kinkade, C. S., Vogel, R. L., Keegstra, P., Hunter, C., & Kim, C. (2012). The development of a new optical total suspended matter algorithm for the Chesapeake Bay. Remote Sensing of Environment, 119, 243–254. https://doi.org/10.1016/j.rse.2011.12.018

    Article  Google Scholar 

  • Ouillon, S., Douillet, P., Petrenko, A., Neveux, J., Dupouy, C., Froidefond, J. M., et al. (2008). Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors, 8(7), 4165–4185. https://doi.org/10.3390/s8074165

    Article  Google Scholar 

  • Park, E., & Latrubesse, E. M. (2014). Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sensing of Environment, 147, 232–242. https://doi.org/10.1016/J.RSE.2014.03.013

    Article  Google Scholar 

  • Petus, C., Chust, G., Gohin, F., Doxaran, D., Froidefond, J. M., & Sagarminaga, Y. (2010). Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Continental Shelf Research, 30(5), 379–392. https://doi.org/10.1016/J.CSR.2009.12.007

    Article  Google Scholar 

  • Pradhan, Y., Thomaskutty, A. V., Rajawat, A. S., & Nayak, S. (2005). Improved regional algorithm to retrieve total suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics a: Pure and Applied Optics, 7(7), 343–349. https://doi.org/10.1088/1464-4258/7/7/012

    Article  Google Scholar 

  • Preisendorfer, R. W. (1976). Hydrological optics, vol. 1. VI, US Dept. of Commerce (6 Volumes). US Department of Commerce.

  • Qiu, Z. (2013). A simple optical model to estimate suspended particulate matter in Yellow River Estuary. Optics Express, 21(23), 27891–27904. https://doi.org/10.1364/OE.21.027891.

  • Raag, L., Uiboupin, R., & Sipelgas, L. (2013). Analysis of historical MERIS and MODIS data to evaluate the impact of dredging to monthly mean surface TSM concentration. https://doi.org/10.1117/12.2032327.

  • Shen, F., Zhou, Y. X., Li, D. J., Zhu, W. J., & Salama, M. H. D. S. (2010). Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary. International Journal of Remote Sensing, 31(17), 4635–4650. https://doi.org/10.1080/01431161.2010.485216

    Article  Google Scholar 

  • Sipelgas, L., Raudsepp, U., & Kõuts, T. (2006). Operational monitoring of suspended matter distribution using MODIS images and numerical modelling. Advances in Space Research, 38(10), 2182–2188. https://doi.org/10.1016/J.ASR.2006.03.011

    Article  Google Scholar 

  • Siswanto, E., Tang, J., Yamaguchi, H., Ahn, Y. H., Ishizaka, J., Yoo, S., et al. (2011). Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. Journal of Oceanography, 67(5), 627–650. https://doi.org/10.1007/S10872-011-0062-Z/TABLES/5

    Article  Google Scholar 

  • Sokoletsky, L., Yang, X., & Shen, F. (2014). MODIS-based retrieval of suspended sediment concentration and diffuse attenuation coefficient in Chinese estuarine and coastal waters. https://doi.org/10.1117/12.2069205.

  • Son, S. H., & Wang, M. (2012). Water properties in Chesapeake Bay from MODIS-Aqua measurements. Remote Sensing of Environment, 123, 163–174. https://doi.org/10.1016/J.RSE.2012.03.009

    Article  Google Scholar 

  • Song, K., Li, L., Wang, Z., Liu, D., Zhang, B., Xu, J., et al. (2012). Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environmental Monitoring and Assessment, 184(3), 1449–1470. https://doi.org/10.1007/s10661-011-2053-3

    Article  Google Scholar 

  • Stumpf, R. P., & Pennock, J. R. (1989). Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary. Journal of Geophysical Research, 94(C10), 14363–14371. https://doi.org/10.1029/jc094ic10p14363

    Article  Google Scholar 

  • Tang, S., Larouche, P., Niemi, A., & Michel, C. (2013). Regional algorithms for remote-sensing estimates of total suspended matter in the Beaufort Sea. International Journal of Remote Sensing, 34(19), 6562–6576. https://doi.org/10.1080/01431161.2013.804222

    Article  Google Scholar 

  • Teodoro, A. C., Veloso-Gomes, F., & Gonçalves, H. (2008). Statistical techniques for correlating total suspended matter concentration with seawater reflectance using multispectral satellite data. Journal of Coastal Research, 24(4 SUPPL.), 40–49. https://doi.org/10.2112/06-0770.1

    Article  Google Scholar 

  • Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105–115. https://doi.org/10.1016/J.RSE.2014.01.009

    Article  Google Scholar 

  • Vijith, V. (2014). Physical oceanography of the Mandovi and Zuari, two monsoonal estuaries in Goa, central west coast of India. Goa University. Retrieved from http://hdl.handle.net/10603/134669.

  • Volpe, V., Silvestri, S., & Marani, M. (2011). Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sensing of Environment, 115(1), 44–54. https://doi.org/10.1016/j.rse.2010.07.013

    Article  Google Scholar 

  • Wang, M., Son, S. H., & Harding, L. W. (2009). Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. Journal of Geophysical Research: Oceans, 114(10), C10011. https://doi.org/10.1029/2009JC005286

    Article  Google Scholar 

  • Willis, K. A., Eriksen, R., Wilcox, C., & Hardesty, B. D. (2017). Microplastic distribution at different sediment depths in an urban estuary. Frontiers in Marine Science, 4(DEC), 419. https://doi.org/10.3389/fmars.2017.00419.

  • Petzold, T. J. (1972). Volume scattering functions for selected ocean waters, Scripps Institution of Oceanography, Visibility Lab, San Diego, p. 85.

  • Wu, G., Cui, L., Liu, L., Chen, F., Fei, T., & Liu, Y. (2015). Statistical model development and estimation of suspended particulate matter concentrations with Landsat 8 OLI images of Dongting Lake, China, 36(1), 343–360. https://doi.org/10.1080/01431161.2014.995273.

  • Wu, G. F., & Cui, L. (2008). Time-series MODIS images- based retrieval and change analysis of suspended sediment concentration during flood period in Poyang Lake (in Chinese). Journal of Lake Science, 28(12), 6113–6120.

    Google Scholar 

  • Yang, W., Matsushita, B., Chen, J., & Fukushima, T. (2011). Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables. Remote Sensing of Environment, 115(5), 1247–1259. https://doi.org/10.1016/j.rse.2011.01.007

    Article  Google Scholar 

  • Zhang, L., Wang, L., Yin, K., Lü, Y., Yang, Y., & Huang, X. (2014). Spatial and seasonal variations of nutrients in sediment profiles and their sediment-water fluxes in the Pearl River Estuary, Southern China. Journal of Earth Science, 25(1), 197–206. https://doi.org/10.1007/s12583-014-0413-y

    Article  Google Scholar 

  • Zhang, M., Dong, Q., Cui, T., Xue, C., & Zhang, S. (2014). Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM + imagery. Remote Sensing of Environment, 146, 136–147. https://doi.org/10.1016/J.RSE.2013.09.033

    Article  Google Scholar 

  • Zhang, M., Tang, J., Dong, Q., Song, Q. T., & Ding, J. (2010). Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2), 392–403. https://doi.org/10.1016/j.rse.2009.09.016

    Article  Google Scholar 

  • Zhang, Y., Liu, X., Yin, Y., Wang, M., & Qin, B. (2012). A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance. Optics Express, 20(18), 20482. https://doi.org/10.1364/oe.20.020482

    Article  Google Scholar 

  • Zhang, Y., Shi, K., Zhou, Y., Liu, X., & Qin, B. (2016). Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sensing of Environment, 173, 109–121. https://doi.org/10.1016/J.RSE.2015.11.020

    Article  Google Scholar 

  • Zhao, H., Chen, Q., Walker, N. D., Zheng, Q., & Macintyre, H. L. (2011). A study of sediment transport in a shallow estuary using MODIS imagery and particle tracking simulation. 32(21), 6653–6671. https://doi.org/10.1080/01431161.2010.512938.

Download references

Funding

Funding was provided by the Ministry of Earth Sciences, India, through Indian National Centre for Ocean Information Services under the SATCORE program grant INCOIS:F\&A:XII:D2:019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harilal B. Menon.

Ethics declarations

Conflict of interest

The authors declare no competing of conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, A., Menon, H.B. A Bio-optical Numerical Approach for Remote Retrieval of Total Suspended Matter from Turbid Waters. J Indian Soc Remote Sens 50, 1773–1786 (2022). https://doi.org/10.1007/s12524-022-01556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01556-1

Keywords

Navigation