Skip to main content
Log in

Temporal and spatial patterns of organic carbon are linked to egg deposition by beach spawning horseshoe crabs (Limulus polyphemus)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The spring spawning by the American horseshoe crab (Limulus polyphemus L.) results in temporally and spatially discrete inputs of eggs onto sandy beaches in Delaware Bay, USA. We tested the hypothesis that seasonal patterns of sediment organic carbon on Delaware Bay beaches is linked to this pulsed input of horseshoe crab eggs. At a location with minimal horseshoe crab spawning activity (Higbee Beach), there was little seasonal variation in sediment organic carbon, no distinction between organic carbon levels as a function of shoreline position or sediment depth, and no significant correlation between the abundance of crab eggs and percent organic carbon. Conversely, at a prime horseshoe crab spawning habitat (North Beach), organic carbon levels were seasonally pulsed and were correlated with egg abundance. Moreover, the strongest evidence of seasonality was seen at the middle foreshore location at the 15–20 cm depth, consistent with the highest input of horseshoe crab eggs. Although some of the organic carbon contributed by horseshoe crab eggs in May–June leaves the beach in the form of hatched larvae later in the year, there is a net input of organic carbon to the system in the form of unfertilized and/or dead eggs, egg membranes, and embryonic molts. We suggest that the inputs of eggs from horseshoe crabs and other beach spawning animals, such as grunion and capelin, make significant contributions to the energy budget of sandy beaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bayer, R. D., 1980. Birds feeding on herring eggs at the Yaquina estuary, Oregon. Condor 82: 93–198.

    Article  Google Scholar 

  • Berkson, J. & C. N. Shuster Jr., 1999. The horseshoe crab: the battle for a true multiple-use resource. Fisheries 24: 6–12.

    Article  Google Scholar 

  • Botton, M. L., 2009. The ecological importance of horseshoe crabs in estuarine and coastal communities: a review and speculative summary. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 45–63.

    Chapter  Google Scholar 

  • Botton, M. L. & R. E. Loveland, 1989. Reproductive risk: high mortality associated with spawning by horseshoe crabs (Limulus polyphemus) in Delaware Bay, USA. Marine Biology 101: 143–151.

    Article  Google Scholar 

  • Botton, M. L. & R. E. Loveland, 2003. Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware Estuary. Estuaries 26: 1472–1479.

    Article  Google Scholar 

  • Botton, M. L., R. E. Loveland & T. R. Jacobsen, 1988. Beach erosion and geochemical factors: influence on spawning success of horseshoe crabs (Limulus polyphemus) in Delaware Bay. Marine Biology 99: 325–332.

    Article  Google Scholar 

  • Botton, M. L., R. E. Loveland & T. R. Jacobsen, 1992. Overwintering by trilobite larvae of the horseshoe crab Limulus polyphemus on a sandy beach of Delaware Bay (New Jersey, USA). Marine Ecology Progress Series 88: 289–292.

    Article  Google Scholar 

  • Botton, M. L., R. E. Loveland & T. R. Jacobsen, 1994. Site selection by migratory shorebirds in Delaware Bay, and its relationship to beach characteristics and abundance of horseshoe crab eggs Limulus polyphemus eggs. Auk 111: 605–616.

    Google Scholar 

  • Botton, M. L., R. E. Loveland & A. Tiwari, 2003. Distribution, abundance, and survivorship of young-of-the-year in a commercially exploited population of horseshoe crabs Limulus polyphemus. Marine Ecology Progress Series 265: 175–184.

    Article  Google Scholar 

  • Botton, M. L., M. Pogorzelska, L. Smoral, A. Shehata & M. G. Hamilton, 2006a. Thermal biology of horseshoe crab embryos and larvae: a role for heat shock proteins. Journal of Experimental Marine Biology and Ecology 336: 65–73.

    Article  CAS  Google Scholar 

  • Botton, M. L., R. E. Loveland, J. T. Tanacredi & T. Itow, 2006b. Horseshoe crabs (Limulus polyphemus) in an urban estuary (Jamaica Bay, New York), and the potential for ecological restoration. Estuaries and Coasts 29: 820–830.

    Google Scholar 

  • Brockmann, H. J., 2003. Nesting behavior: a shoreline phenomenon. In Shuster Jr., C. N., R. B. Barlow & H. J. Brockmann (eds), The American Horseshoe Crab. Harvard University Press, Cambridge: 33–49.

    Google Scholar 

  • Brockmann, H. J. & M. D. Smith, 2009. Reproductive competition and sexual selection in horseshoe crabs. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 199–221.

    Chapter  Google Scholar 

  • Byers, S. C., E. L. Mills & P. L. Stewart, 1978. A comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method. Hydrobiologia 58: 43–47.

    Article  CAS  Google Scholar 

  • Carmichael, R. H., D. Rutecki & I. Valiela, 2003. Abundance and population structure of the Atlantic horseshoe crab Limulus polyphemus in Pleasant Bay, Cape Cod. Marine Ecology Progress Series 246: 225–239.

    Article  Google Scholar 

  • Colombini, I. & L. Chelazzi, 2003. Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology Annual Review 41: 115–159.

    Google Scholar 

  • DeBlois, E. M. & W. C. Leggett, 1991. Functional response and potential impact of invertebrate predators on benthic fish eggs: analysis of the Calliopius laeviusculus-capelin (Mallotus villosus) predator–prey system. Marine Ecology Progress Series 69: 205–216.

    Article  Google Scholar 

  • DeBlois, E. M. & W. C. Leggett, 1993. Impact of amphipod predation on the benthic eggs of marine fish: an analysis of Calliopius laeviusculus bioenergetic demands and predation on the eggs of a beach spawning osmeriid (Mallotus villosus). Marine Ecology Progress Series 93: 205–216.

    Article  Google Scholar 

  • Defeo, O. & A. McLachlan, 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series 295: 1–20.

    Article  Google Scholar 

  • Ehlinger, G. S. & R. A. Tankersley, 2009. Ecology of horseshoe crabs in microtidal lagoons. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 149–162.

    Chapter  Google Scholar 

  • Ehlinger, G. S., R. A. Tankersley & M. A. Bush, 2003. Spatial and temporal patterns of spawning and larval hatching by the horseshoe crab, Limulus polyphemus, in a microtidal coastal lagoon. Estuaries 26: 631–640.

    Article  Google Scholar 

  • Ferrari, K. M. & N. M. Targett, 2003. Chemical attractants in horseshoe crab, Limulus polyphemus, eggs: the potential for an artificial bait. Journal of Chemical Ecology 29: 477–496.

    Article  CAS  PubMed  Google Scholar 

  • Folk, R. L., 1974. Petrology of sedimentary rocks. Hemphill, Austin, TX.

    Google Scholar 

  • Frank, K. T. & W. C. Leggett, 1984. Selective exploitation of capelin (Mallotus villosus) eggs by winter flounder (Pseudopleuronectes americanus): capelin egg mortality rates, and contribution of egg energy to the annual growth of flounder. Canadian Journal of Fisheries and Aquatic Sciences 41: 1294–1302.

    Article  Google Scholar 

  • Gooday, G. W., 2000. The ecology of chitin degradation. Advances in Microbial Ecology 11: 387–430.

    Google Scholar 

  • Haegele, C. W., 1993a. Seabird predation of Pacific herring, Clupea pallasi, spawn in British Columbia. Canadian Field-Naturalist 107: 73–82.

    Google Scholar 

  • Haegele, C. W., 1993b. Epibenthic invertebrate predation of Pacific herring, Clupea pallasi, spawn in British Columbia. Canadian Field-Naturalist 107: 83–91.

    Google Scholar 

  • Haramis, G. M., W. A. Link, P. C. Osenton, D. B. Carter, R. G. Weber, N. A. Clark, M. A. Teece & D. S. Mizrahi, 2007. Stable isotope and pen feeding trial studies confirm value of horseshoe crab eggs to spring migrant shorebirds in Delaware Bay. Journal of Avian Biology 37: 367–376.

    Google Scholar 

  • Hay, D. E. & J. Fulton, 1983. Potential secondary production from herring spawning in the Strait of Georgia. Canadian Journal of Fisheries and Aquatic Sciences 40: 109–113.

    Article  Google Scholar 

  • Hummon, W. D., J. W. Fleeger & M. R. Hummon, 1976. Meiofauna–macrofauna interactions: 1. Sand beach meiofauna affected by maturing Limulus eggs. Chesapeake Science 17: 297–299.

    Article  Google Scholar 

  • James-Pirri, M. J., K. Tuxbury, S. Marino & S. Koch, 2005. Spawning densities, egg densities, size structure, and movement patterns of spawning horseshoe crabs, Limulus polyphemus, within four coastal embayments on Cape Cod, Massachusetts. Estuaries 28: 296–313.

    Article  Google Scholar 

  • Karpanty, S. M., J. D. Fraser, J. Berkson, L. J. Niles, A. Dey & E. P. Smith, 2006. Horseshoe crab eggs determine red knot distribution in Delaware Bay. Journal of Wildlife Management 70: 1704–1710.

    Article  Google Scholar 

  • Kreamer, G. & S. Michels, 2009. History of horseshoe crab harvest on Delaware Bay. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 299–313.

    Chapter  Google Scholar 

  • Leong, L. S. & P. A. Tanner, 1999. Comparisons of methods for determination of organic carbon in marine sediments. Marine Pollution Bulletin 38: 875–879.

    Article  CAS  Google Scholar 

  • Leschen, A. S., S. P. Grady & I. Valiea, 2006. Fecundity and spawning of the Atlantic horseshoe crab, Limulus polyphemus, in Pleasant Bay, Cape Cod, Massachusetts, USA. Marine Ecology 27: 54–65.

    Article  Google Scholar 

  • Mayer, L. M., 1994. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chemical Geology 114: 347–363.

    Article  CAS  Google Scholar 

  • McLachlan, A. & A. Dorvlo, 2005. Global patterns in sandy beach macrobenthic communities. Journal of Coastal Research 21: 674–687.

    Article  Google Scholar 

  • Mizrahi, D. S. & K. A. Peters, 2009. Relationships between sandpipers and horseshoe crab in Delaware Bay: a synthesis. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 65–87.

    Chapter  Google Scholar 

  • Napier, I. R., 1993. The organic carbon content of gravel bed herring spawning grounds and the impact of herring spawn deposition. Journal of the Marine Biological Association of the United Kingdom 73: 863–870.

    Article  Google Scholar 

  • Nordstrom, K. F., N. L. Jackson, D. R. Smith & R. G. Weber, 2006. Transport of horseshoe crab eggs by waves and swash on an estuarine beach: implications for foraging shorebirds. Estuarine, Coastal and Shelf Science 70: 438–448.

    Article  Google Scholar 

  • Novitsky, T. J., 2009. Biomedical applications of Limulus amoebocyte lysate. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 315–329.

    Chapter  Google Scholar 

  • Penn, D. & H. J. Brockmann, 1994. Nest-site selection in the horseshoe crab, Limulus polyphemus. Biological Bulletin 187: 373–384.

    Article  Google Scholar 

  • Pooler, P. S., D. R. Smith, R. E. Loveland, M. L. Botton & S. F. Michels, 2003. Assessment of sampling methods to estimate horseshoe crab (Limulus polyphemus) egg density in Delaware Bay. Fishery Bulletin 101: 698–703.

    Google Scholar 

  • Sekiguchi, K., Y. Yamamichi, H. Seshimo & H. Sugita, 1988. Normal development. In Sekiguchi, K. (ed.), Biology of Horseshoe Crabs. Science House Co. Ltd, Tokyo, Japan: 133–224.

    Google Scholar 

  • Shuster Jr., C. N. & M. L. Botton, 1985. A contribution to the population biology of horseshoe crabs, Limulus polyphemus (L.), in Delaware Bay. Estuaries 8: 363–372.

    Article  Google Scholar 

  • Smith, D. R., 2007. Effect of horseshoe crab spawning density on nest disturbance and exhumation of eggs: a simulation study. Estuaries and Coasts 30: 287–295.

    Google Scholar 

  • Smith, D. R., P. S. Pooler, B. L. Swan, S. F. Michels, W. R. Hall, P. J. Himchak & M. J. Millard, 2002a. Spatial and temporal distribution of horseshoe crab (Limulus polyphemus) spawning in Delaware Bay: implications for monitoring. Estuaries 25: 115–125.

    Article  Google Scholar 

  • Smith, D. R., P. S. Pooler, R. E. Loveland, M. L. Botton, S. F. Michels, R. G. Weber, & D. B. Carter, 2002b. Horseshoe crab (Limulus polyphemus) reproductive activity on Delaware Bay beaches: interaction with beach characteristics. Journal of Coastal Research 18: 730–740 [Corrigendum in: Journal of Coastal Research 20: 357].

  • Weber, R. G. & D. B. Carter, 2009. Distribution and development of Limulus egg clusters on intertidal beaches in Delaware Bay. In Tanacredi, J. T., M. L. Botton & D. R. Smith (eds), Biology and Conservation of Horseshoe Crabs. Springer, New York: 249–266.

    Chapter  Google Scholar 

  • Willson, M. F. & J. N. Womble, 2006. Vertebrate exploitation of pulsed marine prey: a review and the example of spawning herring. Reviews in Fish Biology and Fisheries 16: 183–200.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Haskin Shellfish Laboratory (Rutgers University) for the use of the Cape Shore field station, Drs. F. B. Trama and E. W. Stiles for the use of laboratory equipment, and Dr. T. R. Jacobsen for his assistance in sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Botton.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botton, M.L., Loveland, R.E. Temporal and spatial patterns of organic carbon are linked to egg deposition by beach spawning horseshoe crabs (Limulus polyphemus). Hydrobiologia 658, 77–85 (2011). https://doi.org/10.1007/s10750-010-0451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0451-0

Keywords

Navigation