Skip to main content

Distribution and Development of Limulus Egg Clusters on Intertidal Beaches in Delaware Bay

  • Chapter
  • First Online:
Biology and Conservation of Horseshoe Crabs

Abstract

Accurate knowledge of where spawning Limulus females place their egg clusters in beaches is important for sampling egg cluster density, which in turn is important in studies of habitat use, monitoring Limulus egg production, determining potential shorebird forage, and for investigating the effects of beach erosion or replenishment. We examined Limulus egg cluster placement on seven western shore Delaware Bay beaches. Depth to center of recently laid clusters ranged from 3.5–25.5 cm, with an average depth to center of 15.5 ± 3.5 cm (n=533). Centers of 88.0% (469) of all clusters were within 20 cm of the undisturbed beach surface, and 98.1% of all clusters (523) extended 1 cm or more into the 20 cm horizon. Clusters were found only in the upper 85% of the foreshore, beginning at the spring tide high-water mark, even though beach widths varied (n = 6,132 clusters in 80 transects). Intact, recently laid clusters contained from 2,524 to 16,835 eggs, with an average size of 5,786 ± 2,834 eggs (n =26). Beach sediment temperatures in early May ranged from 13.7°C to 24.2°C (mean = 17.0° ± 3.0°C SD); in early June from 16.4 to 29.7°C (mean = 21.6° ± 3.3°C SD); and in early July from 22.4 to 30.4°C (mean = 26.8° ± 1.9°C SD). Under these conditions, the first trilobite larvae (<25 larvae per beach sampled) normally began to appear in our sediment samples during the first week in June, suggesting that about 35 days are required for development of the earliest eggs in a normal spring. Because egg clusters on all beaches were confined to 85% of the upper foreshore, and most clusters were within reach of a 20 cm deep sample, future studies to assess cluster densities should be designed to sample within that portion of a beach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barlow RB Jr, Powers MK, Howard H, Kass R (1986) Migration of Limulus for mating: Relation to lunar phase, tide height, and sunlight. Biol Bull 171:310–329

    Article  Google Scholar 

  • Barthel KW (1974) Limulus: A living fossil. Naturwissenschaften 61:428–433

    Article  Google Scholar 

  • Botton ML, Loveland RE Jacobsen TR (1992). Overwintering by trilobite larvae of the horseshoe crab Limulus polyphemus on a sandy beach of Delaware Bay (New Jersey, USA). Mar Ecol Prog Ser 88: 289–292

    Article  Google Scholar 

  • Botton ML, Loveland RE, Jacobsen TR (1994) Site selection by migratory shorebirds in Delaware Bay and its relationship to beach characteristics and abundance of horseshoe crab (Limulus polyphemus) eggs. Auk 111:605–616

    Google Scholar 

  • Brockmann HJ (1990) Mating behavior of horseshoe crabs, Limulus polyphemus. Behaviour 114:206–220

    Article  Google Scholar 

  • Brockmann HJ (1994) Sperm competition in horseshoe crabs (Limulus polyphemus). Behav Ecol Sociobiol 35:153–160

    Article  Google Scholar 

  • Brockmann HJ (2003a) Male competition and satellite behavior. In: Shuster CN Jr, Barlow RB, Brockmann HJ (eds), The American Horseshoe Crab, Harvard University Press, Cambridge, pp 50–82

    Google Scholar 

  • Brockmann HJ (2003b) Nesting behavior: A shoreline phenomenon. In: Shuster CN Jr, Barlow RB, Brockmann HJ (eds), The American Horseshoe Crab, Harvard University Press, Cambridge, pp 33–49

    Google Scholar 

  • Brockmann HJ, Nguyen C, Potts W (2000) Paternity in horseshoe crabs when spawning in multiple-male groups. Anim Behav 60:837–849

    Article  PubMed  Google Scholar 

  • Brown GG, Clapper DL (1981) Procedures for maintaining adults, collecting gametes, and culturing embryos and juveniles of the horseshoe crab, Limulus polyphemus L. In: Hinegardner R, Atz J, Fay R, Fingerman M, Josephson R, Meinkoth N (eds), Laboratory Animal Management, Marine Invertebrates. National Academy Press, Washington, DC, pp 268–290

    Google Scholar 

  • Cohen JA, Brockmann HJ (1983) Breeding activity and mate selection in the horseshoe crab, Limulus polyphemus. Bull Mar Sci 33:274–281

    Google Scholar 

  • French KA (1979) Laboratory culture of embryonic and juvenile Limulus. In: Cohen E, Bang FB (eds) Biomedical Applications of the Horseshoe Crab (Limulidae). Alan R. Liss, New York, pp 61–71

    Google Scholar 

  • Hummon, WD, Fleeger JW, Hummon MR (1976) Meiofauna-macrofauna interactions. 1. Sand beach meiofauna affected by Limulus eggs. Chesapeake Sci 17:297–299

    Article  Google Scholar 

  • Jackson NL, Nordstrom KF, Smith DR (2002) Geomorphic-biotic interactions on beach foreshores in estuaries. J Coast Res 414–424

    Google Scholar 

  • Jackson NL, Nordstrom KF, Smith DR (2005). Influence of waves and horseshoe crab spawning on beach morphology and sediment characteristics on a sandy estuarine beach, Delaware Bay, New Jersey, USA. Sedimentology 52:1097–1108

    Article  Google Scholar 

  • Jegla TC, Costlow JD (1982) Temperature and salinity effects on developmental and early posthatch Limulus. In: Bonaventura J, Bonaventura C, Tesh S (eds), Physiology and Biology of Horseshoe Crabs. Alan R. Liss, New York, pp 103–113

    Google Scholar 

  • Kingsley JS (1892) The embryology of Limulus. J Morphol 7:35–68

    Article  Google Scholar 

  • Kraeuter JN, Fegley SR (1994) Vertical disturbance of sediments by horseshoe crabs (Limulus polyphemus) during their spawning season. Estuaries 17:288–294

    Article  Google Scholar 

  • Loveland RE, Botton ML (1992) Size dimorphism and the mating system in horseshoe crab, Limulus polyphemus. Anim Behav 44:907–916

    Article  Google Scholar 

  • Nordstrom KF, Jackson NL, Smith DR, Weber RG (2006) Transport of horseshoe crab eggs by waves and swash on an estuarine beach: Implications for foraging shorebirds. Est Coast Shelf Sci 70:438–448

    Article  Google Scholar 

  • Penn D, Brockmann HJ (1994) Nest-site selection in the horseshoe crab, Limulus polyphemus. Biol Bull 187:373–384

    Article  Google Scholar 

  • Pooler PS, Smith DR, Loveland RE, Botton ML, Michels SF (2003) Assessment of sampling methods to estimate horseshoe crab (Limulus polyphemus L.) egg density in Delaware Bay. Fish Bull 101:698–703

    Google Scholar 

  • Rudloe A (1979) Locomotor and light responses of larvae of the horseshoe crab, Limulus polyphemus (L.). Biol Bull 157:494–505

    Article  Google Scholar 

  • Rudloe A (1985) Variation in the expression of lunar and tidal behavioral rhythms in the horseshoe crab, Limulus polyphemus. Bull Mar Sci 36:388–395

    Google Scholar 

  • Sekiguchi K (1988) Biology of Horseshoe Crabs. Science House, Tokyo

    Google Scholar 

  • Shuster CN Jr (1982) A pictorial review of the natural history and ecology of the horseshoe crab, Limulus polyphemus, with reference to other Limulidae. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and Biology of Horseshoe Crabs. Alan R. Liss, New York, pp 1–52

    Google Scholar 

  • Shuster CN Jr, Botton ML (1985) A contribution to the population biology of horseshoe crabs, Limulus polyphemus (L.) in Delaware Bay. Estuaries 8:363–372

    Article  Google Scholar 

  • Shuster CN Jr, Sekiguchi K (2003) Growing up takes about ten years and eighteen stages. In: Shuster CN Jr, Barlow RB, Brockmann HJ (eds) The American Horseshoe Crab. Harvard University Press, Cambridge, pp 103–132

    Google Scholar 

  • Smith DR (2007) Effect of horseshoe crab spawning density on nest disturbance and exhumation of eggs: A simulation study. Estuar Coasts 30:287–295

    Google Scholar 

  • Smith DR, Michels SF (2006) Seeing the elephant: Importance of spatial and temporal coverage in a large-scale volunteer-based program to monitor horseshoe crabs. Fisheries 31:485–491

    Article  Google Scholar 

  • Smith DR, Pooler PS, Loveland RE, Botton ML, Michels SF, Weber RG, Carter DB (2002) Horseshoe crab (Limulus polyphemus) reproductive activity on Delaware Bay beaches: Interactions with beach characteristics. J Coastal Res 18:730–740

    Google Scholar 

  • Williams KL (1986) A study of horseshoe crab egg distribution with respect to intertidal and depth gradients on two Delaware Bay beaches in New Jersey. 7 January 1986. Report to New Jersey Division of Fish, Game and Wildlife Non-Game and Endangered Species Program. 14 pp.

    Google Scholar 

Download references

Acknowledgments

We thank Katy O’Connell, manager of the St. Jones Center, Delaware National Estuarine Research Reserve, and previous manager Mark Del Vecchio, for making workspace available at the Center and for their attention to various research needs as they arose. Robert Scarborough, St. Jones Center Research Coordinator, worked to assure availability of special equipment. It is a pleasure to acknowledge the careful assistance of several Delaware Coastal Programs staff in this series of projects: T. Arndt, W. Conley, M. Fox, S. Love, M. Mensinger, and J. Reid. Seasonal employees H. Hudson, S. Midcap, D. Ostroff, and W. Ross provided additional support. We also thank David Smith, USGS, for providing critical insights during the course of these projects. All work on beaches, and sampling for egg clusters and eggs, was done under a series of annual permits from the Division of Fish and Wildlife, Delaware Department of Natural Resources and Environmental Control. This project was funded, in part, by a grant from the Delaware Coastal Programs with funding from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration under award number NA05NOS4191169. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA, or of any of its subagencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weber, R.G., Carter, D.B. (2009). Distribution and Development of Limulus Egg Clusters on Intertidal Beaches in Delaware Bay. In: Tanacredi, J., Botton, M., Smith, D. (eds) Biology and Conservation of Horseshoe Crabs. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89959-6_15

Download citation

Publish with us

Policies and ethics