Skip to main content
Log in

Trophic cascade effects of Hoplias malabaricus (Characiformes, Erythrinidae) in subtropical lakes food webs: a mesocosm approach

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

While the cascading effect of piscivorous fish on the pelagic food-web has been well studied in north temperate lakes, little is known about the role of native piscivores in warm lakes. Here, the fish communities are typically characterized by high abundances of small, omnivorous fish exerting a high predation pressure on the zooplankton. We conducted a 1-month replicated mesocosm experiment at subtropical conditions to test the effects of piscivorous (Hoplias malabaricus) fish on phytoplankton biomass and water transparency. Our experimental design comprised two (phytoplankton + zooplankton), three (phytoplankton + zooplankton + planktivores) and four (phytoplankton + zooplankton + planktivores + piscivores) trophic levels. We designed two different four trophic level treatments, one with juveniles of H. malabaricus (<15 cm) and the other with adults (>30 cm), to evaluate the strength of the effects of juveniles and adults. A major trophic cascade response was observed. In the planktivores treatment, chlorophyll a (Chl a) and turbidity significantly increased, while total zooplankton abundance (especially Daphnia obtusa) and water transparency decreased. In both H. malabaricus treatments and in the two trophic levels control, the opposite pattern was observed; thus, Chl a and turbidity decreased, while zooplankton abundance and water transparency increased. The differences observed reflected the strong control on the planktivore Jenynsia multidentata by both sizes of H. malabaricus, propagating down through the trophic web. Hoplias malabaricus is widely distributed in South America and may, therefore, be a good candidate for restoration by biomanipulation in eutrophic lakes of subtropical and tropical regions. However, detailed investigations at whole-lake scale are needed to determine its potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attayde, J. L. & R. F. Menezes, 2008. Effects of fish biomass and planktivore type on plankton communities. Journal of Plankton Research 30: 885–892.

    Article  Google Scholar 

  • Almeida, V. L. L., N. S. Hahn & A. E. A. M. de Vazzoler, 1997. Feeding patterns in five predatory fishes of the high Paraná river floodplain (PR, Brazil). Ecology of Freshwater Fish 6: 123–133.

    Article  Google Scholar 

  • Azevedo, P. & A. L. Gomes, 1942. Contribuição ao estudo da biologia da traíra Hoplias malabaricus (Bloch, 1794). Boletim de Indústria Animal 5: 15–64.

    Google Scholar 

  • Benzie, J. A. & A. M. Hodges, 1996. Daphnia obtusa Kurz, 1874 emend Scow-field, 1942 from Australia. Hydrobiologia 333: 195–199.

    Article  Google Scholar 

  • Betito, R., 2006. Comparação da complexidade das adaptações bioecológicas de dois peixes (Jenynsia multidentata e Poecilia vivipara) (Cyprinodontiformes) no estuário da Lagoa dos Patos (RS – Brasil). Revista Didática Sistêmica 3: 71–100.

    Google Scholar 

  • Bistoni, M. dl A., J. G. Haro & M. Gutiérrez, 1995. Feeding of Hoplias malabaricus in the wetland of Dulce river (Córdoba, Argentina). Hydrobiologia 316: 103–107.

    Article  Google Scholar 

  • Bertollo, L. A. C., G. G. Born, J. A. Dergam, A. S. Fenocchio & O. Moreira Filho, 2000. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromossome Research 8: 603–613.

    Article  CAS  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzing, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Branco, C. W. C., T. Aguiaro, F. A. Esteves & E. P. Caramaschi, 1997. Food sources of the teleost Eucinostomus argenteus in two coastal lagoons of Brazil. Studies on Neotropical Fauna and Environment 32: 33–40.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1996. The trophic cascade in lakes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Esler, M. M. Esler, D. M. Lodge, D. Kretchmer, X. He & C. N. van Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • de Bernardi, R., 1981. Biotic interaction in freshwater and effect on community structure. Bolletino di Zoologia 48: 353–371.

    Google Scholar 

  • Dergam, J. A., H. I. Suzuki, O. A. Shibatta, L. F. Duboc, H. F. Júlio Jr., L. Giuliano-Caetano & W. C. Black IV, 1998. Molecular biogeography of the neotropical fish Hoplias malabaricus (Erythrinidae: Characiformes) in the Iguacu, Tibagi and Paraná Rivers. Genetics and Molecular Biology 21: 493–496.

    Article  Google Scholar 

  • Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.

    Article  Google Scholar 

  • Ferreira, K. M., 2007. Biology and ecomorphology of stream fishes from the rio Mogi-Guaçu basin, Southeastern Brazil. Neotropical Ichthyology 5: 311–326.

    Google Scholar 

  • Ferriz, R. & G. R. López, 1987. Jenynsia lineata lineata (Jenyns) (Teleostei, Cyprinodontiformes, Jenynsiidae). Nueva cita para el Norte de Patagonia. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” IV: 23–27.

  • Galvis, G., J. I. Mojica & M. Camargo, 1997. Peces del Catatumbo. Asociación Cravo Norte, Santafé de Bogotá D.C.

    Google Scholar 

  • García, A. M., J. P. Vieira, K. O. Winemiller & M. B. Raseira, 2004. Reproductive cycle and spatiotemporal variation in abundance of the one-sided livebearer Jenynsia multidentata, in Patos Lagoon, Brazil. Hydrobiologia 515: 39–48.

    Article  Google Scholar 

  • García Romeu, F., A. Salibrian & C. Gluzman de Pascar, 1964. Contribución al conocimiento de la función urofisaria en el ciprinodontiforme eurihalino Jenynsia lineata (Jenyns, 1842). Agro 6: 49–60.

    Google Scholar 

  • Ghedotti, M. J. & S. H. Weitzman, 1996. A new species of Jenynsia (Cyprinodontiformes: Anablepidae) from Brazil with comments on the composition and taxonomy of the genus, Vol. 179. Occasional Papers of the Museum of Natural History of the University of Kansas: 1–25.

  • Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology & Oceanography 45: 22–30.

    Article  Google Scholar 

  • Gómez, S. E., 1993. Susceptibilidad a diversos factores ecológicos extremos, en peces de la pampasia bonaerense, en condiciones de laboratorio. Tesis de Maestría. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata.

  • Goyenola, G., 2008. Historia de vida, rol trófico y uso del espacio de Jenynsia multidentata (Pisces): implicancias sobre la calidad de agua. Tesis de Maestría. PEDECIBA/Facultad de Ciencias. UDELAR, Montevideo.

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hued, A. C. & M. Bistoni, 2001. Abundance and distribution of fish species (Osteichthyes) from San Francisco – Cosquín river in Córdoba, Argentina. Iheringia. Série Zoologia 91: 75–78.

    Google Scholar 

  • Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodó & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584: 179–189.

    Article  CAS  Google Scholar 

  • Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira-de Mello, S. García & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.

    Article  Google Scholar 

  • Jeppesen, E., 1998. The ecology of shallow lakes. Trophic interactions in the pelagial. National Environmental Research Institute, Silkeborg.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, V. (ed.), Restoration and management of tropical eutrophic lakes. Science Publishers Inc., New Hampshire: 331–349.

    Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jakobsen, R. S. Hansen, M. Søndengaard, J. P. Jensen, T. Lauridsen, N. Mazzeo & C. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Meerhoff, K. Holmgren, I. González-Bergonzoni, F. Teixeira-de Mello, S. A. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, in press. Impacts of climate warming on lake fish community structure and dynamics, and potential ecosystem effects. Hydrobiologia Special Volume Shallow Lakes. doi:10.1007/s10750-010-0197-8.

  • Kruk, C., L. Rodríguez-Gallego, F. Quintans, G. Lacerot, F. Scasso, N. Mazzeo, M. Meerhoff & J. C. Paggi, 2006. Biodiversidad y calidad de agua de 18 pequeñas lagunas en la costa sureste de Uruguay. In Menafra, R., L. Rodríguez-Gallego, F. Scarabino & D. Conde (eds), Bases para la conservación y el manejo de la costa uruguaya. Vida Silvestre Uruguay, Montevideo: 599–610.

    Google Scholar 

  • Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verhandlungen der internationale Vereiningung für Limnologie 26: 719–730.

    Google Scholar 

  • Louette, G. & L. De Meester, 2007. Predation and priority effects in experimental zooplankton communities. Oikos 116: 419–426.

    Article  Google Scholar 

  • Luz-Agostinho, K. D. G., A. A. Agostinho, L. C. Gomes & H. F. Júlio Jr., 2008. Influence of food pulses on diet composition and trophic relationships among piscivores fish in the upper Paraná River floodplain. Hydrobiologia 607: 187–198.

    Article  Google Scholar 

  • Marti, G. A., M. M. Azpelicueta, M. Tranchida, S. A. Pelizza & J. J. García, 2006. Predation efficiency of indigenous larvivorous fish species on Culex pipiens L. larvae (Diptera: Culicidae) in drainage ditches in Argentina. Journal of Vector Ecology 31: 102–106.

    Article  PubMed  Google Scholar 

  • Mazzeo, N., G. Lacerot, C. Kruk., J. Gorga, F. Scasso, L. Rodríguez-Gallego, J. M. Clemente, & J. García, 2000. Lago Rivera, situación actual y estrategias para su recuperación. Reporte Técnico. Facultad de Ciencias-Sección Limnología, Montevideo.

  • Mazzeo, N., L. Rodríguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. García-Rodríguez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506: 591–602.

    Article  Google Scholar 

  • Mazzoni, R., L. D. Soares & da Costa, 2007. Feeding ecology of stream-dwelling fishes from coastal stream in southeast of Brazil. Brazilian Archives of Biology and Technology 50: 627–635.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Mehner, T., R. Arlinghaus, S. Berg, H. Dörner, L. Jacobsen, P. Kasprzak, R. Koschel, T. Schulze, C. Skov, C. Wolter & K. Wysujack, 2004. How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zone. Fisheries Management and Ecology 11: 261–275.

    Article  Google Scholar 

  • Menni, R., S. E. Gómez & F. López Armengol, 1996. Subtle relationships: freshwater fishes and water chemistry in southern South America. Hydrobiologia 328: 173–197.

    Article  CAS  Google Scholar 

  • Meschiatti, A. J. & M. S. Arcifa, 2002. Early life stages of fish and the relationships with zooplankton in a tropical Brazilian reservoir: Lake Monte Alegre. Brazilian Journal of Biology 62: 41–50.

    Article  CAS  Google Scholar 

  • Moss, B., R. Kornijow & G. J. Measey, 1998. The effects of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology 39: 689–697.

    Article  Google Scholar 

  • Novaes, J. L. & J. V. Andreata, 1996. Aspectos reprodutivos de Jenynsia lineata Jenyns, 1842 (Osteichthyes, Anablepidae) da Lagoa Rodrigo de Freitas, Rio de Janeiro. Acta Biologica Leopoldensia 18: 129–136.

    Google Scholar 

  • Nusch, E. A., 1980. Comparison of different methods for clorophyll and phaeopigments determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 14: 14–36.

    CAS  Google Scholar 

  • Oliveros, O. B. & L. M. Rossi, 1991. Ecología trófica de Hoplias malabaricus malabaricus (Pisces, Erythrinidae). Revista de la Asociación de Ciencias Naturales del Litoral 22: 55–68.

    Google Scholar 

  • Okun, N., J. Brasil, J. L. Attayde & I. A. S. Costa, 2008. Omnivory does not prevent trophic cascades in pelagic food webs. Freshwater Biology 53: 129–138.

    Google Scholar 

  • Paggi, J. & S. de Paggi, 1974. Primeros estudios sobre el zooplancton de las aguas lóticas del Paraná medio. Physis 33: 94–114.

    Google Scholar 

  • Peretti, D. & I. D. F. Andrian, 2004. Trophic structure of fish assemblages in five permanent lagoons of the high Paraná River floodplain, Brazil. Environmental Biology of Fishes 71: 95–103.

    Article  Google Scholar 

  • Peters, R. H. & R. de Bernardi (eds), 1987. Daphnia. Memorie dell’Istituto Italiano di Idrobiologia, vol. 45.

  • Petry, A. C., A. A. Agostinho, P. A. Piana & L. C. Gomes, 2007. Effects of temperature on prey consumption and growth in mass of juvenile trahira Hoplias aff. malabaricus (Bloch, 794). Journal of Fish Biolology 70: 1855–1864.

    Article  Google Scholar 

  • Pinel-Alloul, B., A. Mazumder, G. Lacroix & X. Lazzaro, 1998. Les réseaux trophiques lacustres: structure, fonctionnement, interactions et variations spatio-temporelles. Revue des Sciences de L’Eau Nº especial: 163–197.

  • Polez, V. L. P., G. Moraes & C. Santos Neto, 2003. Different biochemical strategies of two Neotropical fish to cope with the impairment of nitrogen excretion during air exposure. Brazilian Journal of Medical and Biological Research 36: 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Rantin, F. T. & K. Johansen, 1984. Responses of the teleost Hoplias malabaricus to hypoxia. Environmental Biology of Fishes 11: 221–228.

    Article  Google Scholar 

  • Ringuelet, R. A., 1975. Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur. Ecosur 2: 1–122.

    Google Scholar 

  • Ringuelet, R. A., R. H. Aramburu & A. A. De Aramburu, 1967. Los peces argentinos de agua dulce. Comisión de Investigación Científica (Gobernación). Dirección de Impresiones del Estado y Boletin Oficial, Provincia de Buenos Aires. La Plata.

    Google Scholar 

  • Saint-Paul, U., J. Zuanon, M. A. V. Correa, M. García, N. N. Fabré, U. Berger & W. J. Junk, 2000. Fish communities in central Amazonian white-and blackwater floodplains. Environmental Biology of Fishes 57: 235–250.

    Article  Google Scholar 

  • Scheffer, M. & E. Jeppesen, 1998. Alternative stable states in shallow lakes. In Jeppesen, E., M. Søndergaard, Mo. Søndergaard & K. Cristoffersen (eds), The structuring role of submerged macrophytes in lakes. Springer Verlag, New York: 397–407.

    Google Scholar 

  • Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Teixeira-de Mello, F., C. Iglesias, A. I. Borthagaray, N. Mazzeo, J. Vilches, D. Larrea & R. Ballabio, 2006. Ontogenetic allometric coefficient changes: implications of diet shift and morphometric traits in Hoplias malabaricus (Bloch) (Characiforme, Erythrinidae). Journal of Fish Biology 69: 1770–1778.

    Article  Google Scholar 

  • Thormahlen de Gil, A. L., 1949. Estudio biológico y experimental de las adaptaciones (eurihalinidad) del pez vivíparo Jenynsia lineata. Revista del Museo de La Plata, Serie Zoológica 5: 441–540.

    Google Scholar 

  • Turner, C. L., 1957. The breeding cycle of the South American fish, Jenynsia lineata, in the northern Hemisphere. Copeia 3: 195–203.

    Article  Google Scholar 

  • Underwood, A. J., 1997. Experiments in Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ütermöhl, H., 1958. Zür Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9: 1–38.

    Google Scholar 

  • Valderrama, J., 1981. The simultaneous analysis of total N y P in natural waters. Marine Chemistry 10: 1009–1022.

    Article  Google Scholar 

  • van Leeuwen, E., G. Lacerot, E. H. van Nes, L. Hemerik & M. Scheffer, 2007. Reduced top-down control of phytoplankton in warmer climates can be explained by continuous fish reproduction. Ecological Modelling 206: 205–212.

    Article  Google Scholar 

  • Yafe, A., M. Loureiro, F. Scasso & F. Quintans, 2002. Feeding of two cichlidae species (Perciformes) in an hypertrophic urban lake. Iheringia, Série Zoologica 92: 73–79.

    Google Scholar 

Download references

Acknowledgements

We warmly thank Adela Nuñez, Aníbal Bresque, the personnel of Granja Ña Ramona and PRODIE S.A, Myriam Aldabalde, Fernando Amestoy and Mariana Meerhoff. We also thank Anne Mette Poulsen for editorial assistance, Patricia Mburucuya and Juancito Carrau for their inspirational comments and suggestions. Helpful comments by Sidnei Magela Thomaz and two anonymous reviewers significantly improved the manuscript. This study was funded by Programa de Desarrollo Tecnológico (PDT) Proyecto 07/16, Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Maestría en Ciencias Ambientales and Sistema Nacional de Investigadores (SNI). NM, CI and FTM were supported by SNI. CI was supported by PhD Scholarship Aarhus Univesitet-Danish Research Agency and EJ by the projects ‘Conwoy’ (Danish Natural Science Research Council), ‘Clear’ (a Villum Kann Rasmussen Centre of Excellence project), ‘Eurolimpacs’ and ‘WISER’ (both EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor Mazzeo.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzeo, N., Iglesias, C., Teixeira-de Mello, F. et al. Trophic cascade effects of Hoplias malabaricus (Characiformes, Erythrinidae) in subtropical lakes food webs: a mesocosm approach. Hydrobiologia 644, 325–335 (2010). https://doi.org/10.1007/s10750-010-0197-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0197-8

Keywords

Navigation