Skip to main content
Log in

Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan, J. D., A. S. Flecker & N. L. McClintock, 1987. Prey size selection by carnivorous stoneflies. Limnology and Oceanography 32: 864–872.

    Article  Google Scholar 

  • Anholt, B. R., D. K. Skelly & E. E. Werner, 1996. Factors modifying antipredator behaviour in larval toads. Herpetologica 52: 301–313.

    Google Scholar 

  • Azevedo-Ramos, C., M. Van Sluys, J.-M. Hero & W. E. Magnusson, 1992. Influence of tadpole movement on predation by odonate naiads. Journal of Herpetology 26: 335–338.

    Article  Google Scholar 

  • Benard, M. F., 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Annual Review of Ecology, Evolution, and Systematics 35: 651–673.

    Article  Google Scholar 

  • Benard, M. F. & J. A. Fordyce, 2003. Are induced defenses costly? Consequences of predator-induced defenses in western toads, Bufo boreas. Ecology 84: 68–78.

    Article  Google Scholar 

  • Brendonck, L., E. Michels, L. De Meester & B. Riddoch, 2002. Temporary pools are not ‘enemy-free’. Hydrobiologia 486: 147–159.

    Article  Google Scholar 

  • Brockelman, W. Y., 1969. An analysis of density effects and predation in Bufo americanus tadpoles. Ecology 50: 632–644.

    Article  Google Scholar 

  • Caldwell, J. P., J. H. Thorp & T. O. Jervey, 1980. Predator-prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46: 285–289.

    Google Scholar 

  • Calef, G. W., 1973. Natural mortality of tadpoles in a population of Rana aurora. Ecology 54: 741–758.

    Article  Google Scholar 

  • Cronin, J. T. & J. Travis, 1986. Size-limited predation on larval Rana areolata (Anura: Ranidae) by two species of backswimmer (Insecta: Hemiptera: Notonectidae). Herpetologica 42: 171–174.

    Google Scholar 

  • Crump, M. L., 1984. Ontogenetic changes in vulnerability to predation in tadpoles of Hyla pseudopuma. Herpetologica 40: 265–271.

    Google Scholar 

  • Dayton, G. H. & L. A. Fitzgerald, 2001. Competition, predation, and the distribution of four desert anurans. Oecologia 129: 430–435.

    Google Scholar 

  • De Witt, T. J., 1998. Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life-history in a freshwater snail. Journal of Evolutionary Biology 11: 465–480.

    Article  Google Scholar 

  • Eklöv, P. & E. E. Werner, 2000. Multiple predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88: 250–258.

    Article  Google Scholar 

  • Feminella, J. W. & C. P. Hawkins, 1994. Tailed frog tadpoles differentially alter their feeding behavior in response to non-visual cues from four predators. Journal of North American Benthological Society 13: 310–320.

    Article  Google Scholar 

  • Formanowicz, D. R. Jr., 1986. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42: 367–373.

    Google Scholar 

  • Formanowicz, D. R. Jr., & E. D. Brodie Jr., 1982. Relative palatabilities of members of a larval amphibian community. Copeia 1982: 91–97.

    Article  Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos on larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Griffiths, R. A., L. Schley, P. E. Sharp, J. L. Dennis & A. Román, 1998. Behavioural responses of Mallorcan midwife toad tadpoles to natural and unnatural snake predators. Animal Behaviour 55: 207–214.

    Article  PubMed  Google Scholar 

  • Gunzburger, M. S. & J. Travis, 2005. Critical literature review of the evidence for unpalatability of amphibian eggs and larvae. Journal of Herpetology 39: 547–571.

    Article  Google Scholar 

  • Hambright, K. D., 1991. Experimental analysis of prey selection by largemouth bass: role of predator mouth width and prey body depth. Transactions of the American Fisheries Society 120: 500–508.

    Article  Google Scholar 

  • Heyer, W. R., R. W. McDiarmid & D. L. Weigmann, 1975. Tadpoles, predation and pond habitats in the tropics. Biotropica 7: 100–111.

    Article  Google Scholar 

  • Jara, F. G., 2008. Tadpole-odonate larvae interactions: influence of body size and diel rhythm. Aquatic Ecology 42: 503–509.

    Article  Google Scholar 

  • Jara, F. G. & M. G. Perotti, 2006. Variación ontogenética en la palatabilidad de los renacuajos de Bufo spinulosus papillosus Philippi, 1902 (Anura, Bufonidae). Cuadernos de Herpetologia 19: 37–42.

    Google Scholar 

  • Jara, F. G. & M. G. Perotti, 2009. Toad tadpole responses to predator risk: Ontogenetic change between constitutive and inducible defenses. Journal of Herpetology 43: 82–88.

    Article  Google Scholar 

  • Jara, F. G., M. Lozada & C. A. Úbeda, 2006. Bufo spinulosus papillosus tadpole behavior. Herpetological Review 37: 201.

    Google Scholar 

  • Johnson, E. B., P. Bierzychudek & H. H. Whiteman, 2003. Potential of prey size and type to affect foraging asymmetries in tiger salamander (Ambystoma tigrinum nebulosum) larvae. Canadian Journal of Zoology 81: 1726–1735.

    Article  Google Scholar 

  • Kats, L. B., J. W. Petranka & A. Sih, 1988. Antipredator defences and the persistence of amphibian larvae with fishes. Ecology 69: 1865–1870.

    Article  Google Scholar 

  • Kiesecker, J. M., D. P. Chivers & A. R. Blaustein, 1996. The use of chemical cues in predator recognition by western toad tadpoles. Animal Behaviour 52: 1237–1245.

    Article  Google Scholar 

  • Kishida, O. & K. Nishimura, 2005. Multiple inducible defenses against multiple predators in the anuran tadpole, Rana pirica. Evolutionary Ecology Research 7: 619–631.

    Google Scholar 

  • Kishida, O., Y. Mizuta & K. Nishimura, 2006. Reciprocal phenotypic plasticity in a predator–prey interaction between larval amphibians. Ecology 87: 1599–1604.

    Article  PubMed  Google Scholar 

  • Kraft, P. G., C. E. Franklin & M. W. Blows, 2006. Predator-induced phenotypic plasticity in tadpoles: extension or innovation? Journal of Evolutionary Biology 19: 1813–1818.

    Article  CAS  PubMed  Google Scholar 

  • Lane, S. J. & M. J. Mahoney, 2002. Larval anurans with synchronous and asynchronous development periods: contrasting responses to water reduction and predator presence. Journal of Animal Ecology 71: 780–792.

    Article  Google Scholar 

  • Laurila, A., S. Pakkasmaa & J. Merila, 2006. Population divergence in growth rate and antipredator defences in Rana arvalis. Oecologia 147: 585–595.

    Article  PubMed  Google Scholar 

  • Lawler, S. P., 1989. Behavioral responses to predation and predation risk in four species of larval anurans. Animal Behaviour 38: 1039–1047.

    Article  Google Scholar 

  • Martin, P. & P. Bateson, 1993. Measuring behaviour, an introductory guide. Cambridge University Press, Cambridge.

    Google Scholar 

  • McIntyre, P. B., S. Baldwin & A. S. Flecker, 2004. Effects of behavioral and morphological plasticity on risk of predation in a neotropical tadpole. Oecologia 141: 130–138.

    Article  PubMed  Google Scholar 

  • Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla & R. A. Relyea, 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution 20: 685–692.

    Article  PubMed  Google Scholar 

  • Peckarsky, B. L., 1996. Alternative predator-avoidance syndromes of stream-dwelling mayflies. Ecology 77: 1888–1905.

    Article  Google Scholar 

  • Perotti, M. G., L. A. Fitzgerald, L. Moreno & M. Pueta, 2006. Behavioral responses of Bufo arenarum tadpoles to odonate naiad predation. Herpetological Conservation and Biology 1: 117–120.

    Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Peterson, J. A. & A. R. Blaustein, 1992. Relative palatabilities of anuran larvae to natural aquatic insect predators. Copeia 1992: 577–584.

    Article  Google Scholar 

  • Petranka, J. W., 1983. Fish predation: a factor affecting the spatial distribution of a stream-dwelling salamander. Copeia 1983: 624–628.

    Article  Google Scholar 

  • Relyea, R. A., 2001a. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82: 523–540.

    Article  Google Scholar 

  • Relyea, R. A., 2001b. The relationship between predation risk and antipredator responses in larval anurans. Ecology 82: 541–554.

    Article  Google Scholar 

  • Relyea, R. A., 2002. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecological Monograph 72: 523–540.

    Article  Google Scholar 

  • Relyea, R. A., 2003. Predators come and predators go: the reversibility of predator-induced traits. Ecology 84: 1840–1848.

    Article  Google Scholar 

  • Relyea, R. A. & E. E. Werner, 1999. Quantifying the relationship between predator-induced behavior and growth performance in larval anurans. Ecology 80: 2117–2124.

    Article  Google Scholar 

  • Richards, S. J. & C. M. Bull, 1990. Size-limited predation on tadpoles of three Australian frogs. Copeia 1990: 1041–1046.

    Article  Google Scholar 

  • Richardson, J. L., 2001. A comparative study of activity levels in larval anurans and response to the presence of different predators. Behavioral Ecology 12: 51–58.

    Google Scholar 

  • Richter-Boix, A., G. A. Llorente & A. Montori, 2008. A comparative study of predator-induced phenotype in tadpoles across a pond permanency gradient. Hydrobiologia 583: 43–56.

    Article  Google Scholar 

  • Schaffer, H. B., R. A. Alford, B. D. Woodward, S. J. Richards, R. G. Altig & C. Gascon, 1994. Quantitative sampling of amphibian larvae. In Heyer, W. R., M. A. Donnelly, R. W. McDiarmid, L. C. Hayek & M. S. Foster (eds), Measuring and Monitoring Biological Diversity Standard Methods for Amphibians. Smithsonian Institution Press, Washington: 130–141.

    Google Scholar 

  • Schmidt, B. R. & A. Amézquita, 2001. Predator-induced behavioral responses: tadpoles of neotropical frog Phyllomedusa tarsius do not respond to all predators. Herpetological Journal 11: 9–15.

    Google Scholar 

  • Semlitsch, R. D. & S. Gavasso, 1992. Behavioral responses of Bufo bufo and Bufo calamita to chemical cues of vertebrate and invertebrate predators. Ethology, Ecology, and Evolution 4: 165–173.

    Google Scholar 

  • Sih, A., 1987. Predators and prey lifestyles: an evolutionary and ecological overview. In Sih, A. & W. C. Kerfoot (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover: 203–224.

    Google Scholar 

  • Sih, A., 1992. Integrative approaches to the study of predation: general thoughts and a case study on sunfish and salamander larvae. Annals of Zoology Fennici 29: 183–198.

    Google Scholar 

  • Skelly, D. K., 1992. Field evidence for a cost of behavioral antipredator response in a larval amphibian. Ecology 73: 704–708.

    Article  Google Scholar 

  • Skelly, D. K., 1994. Activity level and the susceptibility of anuran larvae to predation. Animal Behaviour 47: 465–468.

    Article  Google Scholar 

  • Skelly, D. K., 1995. A behavioural trade-off and its consequences for the distribution of Pseudacris treefrog larvae. Ecology 76: 150–164.

    Article  Google Scholar 

  • Skelly, D. K., 1996. Pond drying, predators and the distribution of Pseudacris tadpoles. Copeia 1996: 599–605.

    Article  Google Scholar 

  • Skelly, D. K., 1997. Tadpole communities. American Science 85: 36–45.

    Google Scholar 

  • Skelly, D. K. & E. E. Werner, 1990. Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology 71: 2313–2322.

    Article  Google Scholar 

  • Smith, D. C., 1983. Factor controlling tadpole populations of the chorus frog (Pseudacris triseriata) on Isle Royale, Michigan. Ecology 64: 501–510.

    Article  Google Scholar 

  • Stav, G., B. P. Kotler & L. Blaustein, 2007. Direct and indirect effects of dragonfly (Anax imperator) nymphs on green toad (Bufo viridis) tadpoles. Hydrobiologia 579: 85–93.

    Article  Google Scholar 

  • Takahara, T., Y. Kohmatsu, A. Maruyama & R. Yamaoka, 2003. Effects of chemical cues on tadpole survival. Ecological Research 18: 793–796.

    Article  CAS  Google Scholar 

  • Teplitsky, C. & A. Laurila, 2007. Flexible defence strategies: competition modifies investment in behavioral vs. morphological defences. Ecology 88: 1641–1646.

    Article  PubMed  Google Scholar 

  • Travis, J., W. H. Keen & J. Julianna, 1985. The role of relative body size in a predator–prey relationship between dragonfly naiads and larval anurans. Oikos 45: 59–65.

    Article  Google Scholar 

  • Urban, M. C., 2007. Predator size and phenology shape prey survival in temporary ponds. Oecologia 154: 571–580.

    Article  PubMed  Google Scholar 

  • Van Buskirk, J., 2001. Specific induced responses to different predator species in anuran larvae. Journal of Evolutionary Biology 14: 482–489.

    Article  Google Scholar 

  • Vonesh, J. R., 2003. Sequential predation in a complex life-history: interactions among egg, larval, and post-metamorphic predators of the east African treefrog, Hyperolius spinigularis. PhD thesis. University of Florida: 131 pp.

  • Wassersug, R. J., 1973. Aspects of social behavior in anuran larvae. In Vial, J. L. (ed.), Evolutionary Biology of Anurans: Contemporary Research on Major Problems. University of Missouri Press, Columbia: 273–297.

    Google Scholar 

  • Wassersug, R. J. & D. G. Sperry, 1977. The relationship of locomotion to differential predation on Pseudacris triseriata (Anura: Hylidae). Ecology 58: 830–839.

    Article  Google Scholar 

  • Wilbur, H. M., 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78: 2279–2302.

    Article  Google Scholar 

  • Wilson, D. S., 1975. The adequacy of body size as a niche difference. American Naturalist 109: 769–784.

    Article  Google Scholar 

  • Woodward, B. D., 1983. Predator prey interactions and breeding pond use of temporary pond species in a desert anuran community. Ecology 64: 1549–1555.

    Article  Google Scholar 

Download references

Acknowledgements

This research was performed under the institutional Animal Care guidelines established by Argentinean animal protection law and Administración de Parques Nacionales, Argentina. Animals for this study were collected with the permission of Administración de Parques Nacionales, Argentina. We thank J. Muzon and S. Mazzucconi for identifying insect species. We are grateful to an anonymous reviewer and M. Tejedo for all comments that improved this manuscript. We also thank G. Dayton and D. Saenz for their assistance with editing and providing useful comments and suggestions. This work was supported by Universidad Nacional del Comahue (B940), Consejo Nacional de Investigaciones Científicas y Tecnológicas (PIP 6451) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 01-13550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Gastón Jara.

Additional information

Handling editor: L. B. Kats

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jara, F.G., Perotti, M.G. Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644, 313–324 (2010). https://doi.org/10.1007/s10750-010-0196-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0196-9

Keywords

Navigation