Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

Abstract

Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation on fish metabolism, biotic interactions and geographical distribution. We review published and new data supporting the hypotheses that, with a warming climate, there will be changes in: fish community structure (e.g. higher or lower richness depending on local conditions); life history traits (e.g. smaller body size, shorter life span, earlier and less synchronised reproduction); feeding mode (i.e. increased omnivory and herbivory); behaviour (i.e. stronger association with littoral areas and a greater proportion of benthivores); and winter survival. All these changes imply higher predation on zooplankton and macroinvertebrates with increasing temperatures, suggesting that the changes in the fish communities partly resemble, and may intensify, the effects triggered by eutrophication. Modulating factors identified in cold and temperate systems, such as the presence of submerged plants and winter ice cover, seem to be weaker or non-existent in warm(ing) lakes. Consequently, in the future lower nutrient thresholds may be needed to obtain clear-water conditions and good ecological status in the future in currently cold or temperate lakes. Although examples are still scarce and more research is needed, we foresee biomanipulation to be a less successful restoration tool in warm(ing) lakes without a strong reduction of the nutrient load.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. S. Perez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403–414.

    Article  Google Scholar 

  2. Atkinson, D. & R. M. Sibly, 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12: 235–239.

    Article  Google Scholar 

  3. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, M. L. K. Mataraza & D. E. Canfield, 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.

    Article  Google Scholar 

  4. Balayla, D. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia. doi:10.1007/s10750-010-0164-4.

  5. Behrens, M. D. & K. D. Lafferty, 2007. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Canadian Journal of Fisheries and Aquatic Sciences 64: 867–873.

    Article  Google Scholar 

  6. Beklioglu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.

    Article  Google Scholar 

  7. Bergmann, C., 1847. Uber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gottinger Studien 1: 595–708.

    Google Scholar 

  8. Blanck, A. & N. Lammouroux, 2007. Large-scale intraspecific variation in life-history traits of 44 European freshwater fish. Journal of Biogeography 34: 862–875.

    Article  Google Scholar 

  9. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Järvinen, C. N. Aonghusa, T. Nõges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.

    Article  Google Scholar 

  10. Brinkmann, W. L. F. & U. M. Santos, 1973. Heavy fish-kill in unpolluted flood-plain lakes of Central Amazonia. Brazilian Biology Conservation 5: 146–197.

    Article  Google Scholar 

  11. Brucet, S., D. Boix, S. Gascan, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.

    Article  Google Scholar 

  12. Carpenter, S. R. & J. F. Kitchell (eds), 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge: 399 pp.

    Google Scholar 

  13. Danger, M., G. Lacroix, S. Kâ, E. H. Ndour, D. Corbin & X. Lazzaro, 2009. Food-web structure and functioning of temperate and tropical lakes: a stoichiometric viewpoint. Annales de Limnologie – International Journal of Limnology 45: 11–21.

    Article  Google Scholar 

  14. Declerck, S. A. J., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van, C. P. der Gucht, T. Martinez, K. Lauridsen, G. Schwenk, W. Zwart, J. Rommens, E. Lopez-Ramos, W. Jeppesen, L. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  15. Dejenie, T., T. Asmelash, L. De Meester, A. Mulugeta, A. Gebrekidan, S. Risch, A. Pals, K. Van der Gucht, W. Vyverman, J. Nyssen, S. Deckers & S. Declerck, 2008. Limnological and ecological characteristics of tropical highland reservoirs in Tigray, Northern Ethiopia. Hydrobiologia 610: 193–209.

    Article  CAS  Google Scholar 

  16. Dembski, S., G. Masson, D. Monnier, P. Wagner & J. C. Phan, 2006. Consequences of elevated temperatures on life-history traits of an introduced fish, pumpkinseed Lepomis gibbosus. Journal of Fish Biology 69: 331–346.

    Article  Google Scholar 

  17. Drenner, R. W. & K. D. Hambright, 1999. Biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie 146: 129–165.

    Google Scholar 

  18. Durant, J. M., D. O. Hjermann, G. Ottersen & N. C. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.

    Article  Google Scholar 

  19. Elliott, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.

    Google Scholar 

  20. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.

    Article  Google Scholar 

  21. Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46: 713–723.

    Article  Google Scholar 

  22. Gelós, M., F. Teixeira-de Mello, G. Goyenola, C. Iglesias, C. Fosalba, F. García-Rodríguez, J. P. Pacheco, S. García & M. Meerhoff, 2010. Seasonal and diel changes in fish activity and potential cascading effects in subtropical shallow lakes with different water transparency. Hydrobiologia. doi:10.1007/s10750-010-0170-6.

  23. Griffiths, D., 2006. Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology 75: 734–751.

    Article  PubMed  Google Scholar 

  24. Grimalt, J. O., J. Catalan, P. Fernandez, B. Piña & J. Munthe, 2010. Chapter 7: distribution of persistent organic pollutants and mercury in freshwater ecosystems under changing climate conditions. In Kernan, M., R. Battarbee & B. Moss (eds), Climate Change and Freshwaters. Blackwell, Oxford.

  25. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijów, M. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.

    Article  Google Scholar 

  26. Harrod, C., D. Griffiths, R. Rosell & T. K. McCarthy, 2002. Current status of the pollan (Coregonus autumnalis Pallas 1776) in Ireland. Archiv für Hydrobiologie, Special Issues Advances in Limnology 57: 627–638.

    Google Scholar 

  27. Hartmann, J., 1977. Fischereiliche Veranderungen in kulturbedingt eutrophierenden Seen. Schweizerische Zhurnal der Hydrologie 39: 243–254.

    Article  Google Scholar 

  28. Havens, K. E., 2002. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. The Scientific World 2: 926–942.

    CAS  Google Scholar 

  29. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28.

    Article  Google Scholar 

  30. Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira-de Mello & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata Jenyns (Cyprinodontiformes, Anablepidae) a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.

    Article  Google Scholar 

  31. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. IPCC, WGII.

    Google Scholar 

  32. Jackson, L. J., M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.

    Article  CAS  Google Scholar 

  33. Jensen, E., S. Brucet, M. Meerhoff, L. Nathansen & E. Jeppesen, 2010. Community structure and diel migration of zooplankton in brackish lakes: role of salinity and predators. Hydrobiologia. doi:10.1007/s10750-010-0172-4.

  34. Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Eriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 276: 15–30.

    Article  Google Scholar 

  35. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish Lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.

    Article  CAS  Google Scholar 

  36. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Köhler, S. Körner, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  37. Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007a. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    Article  CAS  Google Scholar 

  38. Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007b. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.

    Article  CAS  Google Scholar 

  39. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1030–1041.

    Article  CAS  Google Scholar 

  40. Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  41. Kalff, J., 2000. Limnology. Prentice Hall, Upper Saddle River, NJ: 592 pp.

    Google Scholar 

  42. Kosten, S., A. Kamarainen, E. Jeppesen, E. H. van Nes, E. T. H. M. Peeters, N. Mazzeo, L. Sass, J. Hauxwell, N. Hansel-Welch, T. L. Lauridsen, M. Søndergaard, R. W. Bachmann, G. Lacerot & M. Scheffer, 2009. Climate-related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology 15: 2503–2517.

    Article  Google Scholar 

  43. Kristmundsson, Á., T. Antonsson & F. Árnason, 2010. First record of proliferative kidney disease in Iceland. Bulletin of the European Association of Fish Pathologists 30(1): 35–40.

    Google Scholar 

  44. Kruk, C., L. Rodríguez-Gallego, M. Meerhoff, F. Quintans, F. Scasso, G. Lacerot, N. Mazzeo, J. Paggi, E. Peeters & M. Scheffer, 2009. Determinants of diversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.

    Article  CAS  Google Scholar 

  45. Lappalainen, J. & H. Lehtonen, 1997. Temperature habitats for freshwater fishes in a warming climate. Boreal Environment Research 2: 69–84.

    Google Scholar 

  46. Lappalainen, J. & A. S. Tarkan, 2007. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. Journal of Fish Biology 70: 441–450.

    Article  Google Scholar 

  47. Lappalainen, J., H. Lehtonen, P. Böhling & V. Erm, 1996. Covariation in year-class strength of perch, Perca fluviatilis L. and pikeperch, Stizostedion lucioperca (L.). Annales Zoologici Fennici 33: 421–426.

    Google Scholar 

  48. Lappalainen, J., M. Vinni & J. Kjellman, 2003. Diet, condition and mortality of pikeperch (Sander lucioperca) during their first winter. Archiv für Hydrobiologie, Special Issues Advances in Limnology 59: 207–217.

    Google Scholar 

  49. Lappalainen, J., A. S. Tarkan & C. Harrod, 2008. A meta-analysis of latitudinal variations in life-history traits of roach, Rutilus rutilus, over its geographical range: linear or non-linear relationships? Freshwater Biology 53: 1491–1501.

    Article  Google Scholar 

  50. Laws, E. A. & J. R. S. Weisburd, 1990. Use of silver carp to control algal biomass in aquatic ponds. Progress in Fish Culture 52: 1–8.

    Article  Google Scholar 

  51. Lawton, J. H., 1991. Species richness and population dynamics of animal assemblages: patterns on body size: abundance space. Philosophical Transactions of the Royal Society of London, Series B 330: 283–291.

    Article  Google Scholar 

  52. Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verhandlungen der Internationale Vereinigung für Limnologie 26: 719–730.

    Google Scholar 

  53. Lazzaro, X. & F. Starling, 2005. Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoá, Brazil). In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. Oxford & IBH Publ. Co. Pvt. Ltd., Science Publishers Inc., New Delhi, New Hampshire, USA: 361–387.

    Google Scholar 

  54. Lazzaro, X., M. Bouvy, R. A. Ribeiro-Filho, V. S. Oliveira, L. T. Sales, A. R. M. Vasconcelos & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology 48: 649–668.

    Article  Google Scholar 

  55. Lehtonen, H., 1996. Potential effects of global warming on northern European freshwater fish and fisheries. Fisheries Management Ecology 3: 59–71.

    Article  Google Scholar 

  56. Lehtonen, H. & J. Lappalainen, 1995. The effects of climate on the year-class variations of certain freshwater fish species. In Beamish, R. J. (ed.), Climate Change and Northern Fish Populations, Vol. 121. Canadian Special Publication of Fisheries and Aquatic Sciences, Ottawa, Canada: 37–44.

    Google Scholar 

  57. Malmquist, H. J. 2004. Life history traits of Arctic charr and environmental factors: local variability and latitudinal gradients. The ACIA International Scientific Symposium on Climate Change in the Arctic: Extended Abstracts. AMAP Report 2004:4. Poster Session A2: Paper 8: 45–47.

  58. Malmquist, H. J., Th. Antonsson, H. R. Ingvason & F. Árnason, 2009. Salmonid fish and warming of shallow Lake Elliðavatn in Southwest Iceland. Verhandlungen der Internationale Vereinigung der Limnologie 30: 1127–1132.

    Google Scholar 

  59. Matveev, V., L. Matveeva & G. Jones, 1994. Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: implications for biomanipulation in Australia. Australian Journal of Marine & Freshwater Research 45: 899–904.

    Article  Google Scholar 

  60. Matyas, K., I. Oldal, J. Korponai, I. Tatrai & G. Pau′ lovits, 2003. Indirect effect of different fish communities in nutrient chlorophyll relationship in shallow hypertrophic water quality reservoir. Hydrobiologia 504: 231–239.

    Article  Google Scholar 

  61. Mazzeo, N., L. Rodriguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. Garcia-Rodriguez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506: 591–602.

    Article  Google Scholar 

  62. Mazzeo, N., C. Iglesias, F. Teixeira-de Mello, A. Borthagaray, C. Fosalba, R. Ballabio, D. Larrea, J. Vilches & E. Jeppesen, 2010. Trophic cascade effects of Hoplias malabaricus (Characiformes, Eritrinidae) in subtropical food webs: a mesocosm approach. Hydrobiologia. doi:10.1007/s10750-010-0197-8.

  63. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  64. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen, E. Jeppesen & E., 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  65. Meerhoff, M., C. Iglesias, F. Teixeira-de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  66. Mergeay, J., S. Declerck, D. Verschuren & L. De Meester, 2006. Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments. Freshwater Biology 51: 399–411.

    Article  Google Scholar 

  67. Moran, R., I. Harvey, B. Moss, H. Feuchtmayr, K. Hatton, T. Heyes & D. Atkinson, 2009. Influence of simulated climate change and eutrophication on three-spined stickleback populations: a large scale mesocosm experiment. Freshwater Biology (online).

  68. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.

    Article  Google Scholar 

  69. Moss, B., D. Stephen, D. M. Balayla, E. Becares, S. E. Collings, C. Fernandez-Alaez, M. Fernandez-Alaez, C. Ferriol, P. Garcia, J. Goma, M. Gyllstrom, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentin, W. J. Van De Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.

    Article  CAS  Google Scholar 

  70. Nagdali, S. S. & P. K. Gupta, 2002. Impact of mass mortality of a mosquito fish, Gambussia affinis, on the ecology of a freshwater eutrophic lake (Lake Naini Tal, India). Hydrobiologia 468: 45–52.

    Article  Google Scholar 

  71. Norton, S. F. & E. L. Brainerd, 1993. Convergence on the feeding mechanics of ecomorphologically similar species in the Centrarhidae and Cichlidae. Journal of Experimental Biology 176: 11–29.

    Google Scholar 

  72. Pacheco, J. P., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira-de Mello, S. García & F. García-Rodríguez, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic state (Uruguay): a morphology based approach. Hydrobiologia. doi:10.1007/s10750-010-0180-4.

  73. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37: 637–669.

    Article  Google Scholar 

  74. Pelicice, F. M. & A. A. Agostinho, 2006. Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish 15: 10–19.

    Article  Google Scholar 

  75. Persson, L., 1986. Temperature-induced shift in foraging ability in two fish species, Roach (Rutilus rutilus) and Perch (Perca fluviatilis): implications for coexistence between poikilotherms. Journal of Animal Ecology 55: 829–839.

    Article  Google Scholar 

  76. Persson, L. & P. Eklöv, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.

    Article  Google Scholar 

  77. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.

    Article  Google Scholar 

  78. Prejs, A., 1984. Herbivory by temperate freshwater fishes and its consequences. Environmental Biology of Fishes 10: 281–296.

    Article  Google Scholar 

  79. Riget, F., E. Jeppesen, F. Landkildehus, T. L. Lauridsen, P. Geertz-Hansen, K. Christoffersen & H. Sparholt, 2000. Landlocked arctic char (Salvelinus alpinus) population structure and lake morphometry in Greenland—is there a connection? Polar Biology 23: 550–558.

    Article  Google Scholar 

  80. Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. M. Clemente, D. Fabián & S. Bonilla, 2001. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquatic Conservation: Marine and Freshwater Ecosystems 11: 31–44.

    Article  Google Scholar 

  81. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  Google Scholar 

  82. Sereda, J. M., J. F. Hudson & P. D. McLoughlin, 2008. General empirical models for predicting the release of nutrients by fish, with a comparison between detritivores and non-detritivores. Freshwater Biology 53: 2133–2144.

    Google Scholar 

  83. Shuter, B. J. & J. R. Post, 1990. Climate, population, viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society 119: 314–336.

    Article  Google Scholar 

  84. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.

    Article  Google Scholar 

  85. Sterud, E., T. Forseth, O. Ugedal, T. T. Poppe, A. Jørgensen, T. Bruheim, H.-P. Fjeldstad & T. Atle Mo, 2007. Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa). Diseases of Aquatic Organisms 77: 191–198.

    Article  PubMed  Google Scholar 

  86. Straile, D., R. Eckmann, T. Jungling, G. Thomas & H. Loffler, 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151: 521–529.

    Article  PubMed  Google Scholar 

  87. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

    Article  CAS  Google Scholar 

  88. Tolonen, A., J. Lappalainen & E. Pulliainen, 2003. Seasonal growth and year class strength variations of perch near the northern limits of its distribution range. Journal of Fish Biology 63: 176–186.

    Article  Google Scholar 

  89. van Leeuwen, E., G. Lacerot, E. H. Van Nes, L. Hemerika & M. Scheffer, 2007. Reduced top-down control of phytoplankton in warmer climates can be explained by continuous fish reproduction. Ecological Modelling 206: 205–212.

    Article  Google Scholar 

  90. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.

    Article  Google Scholar 

  91. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.

    Article  Google Scholar 

  92. Venne, H. & P. Magnan, 1989. Life history tactics in landlocked Arctic charr (Salvelinus alpinus): a working hypothesis. Physiology and Ecology Japan 1: 239–248.

    Google Scholar 

  93. Winemiller, K. O., 1990. Spatial and temporal variation in tropical fish trophic network. Ecological Monographs 60: 331–367.

    Article  Google Scholar 

  94. Winfield, I. J., J. M. Fletcher & J. B. James, 2008. The Arctic charr (Salvelinus alpinus) populations of Windermere, UK: population trends associated with eutrophication, climate change and increased abundance of roach (Rutilus rutilus). Environmental Biology of Fishes 83: 25–35.

    Article  Google Scholar 

  95. Wu, J., P. Xie, M. Dai & J. Wang, 1997. Effects of silver carp density on zooplankton and water quality: implications for eutrophic lakes in China. Journal of Freshwater Ecology 12: 437–444.

    CAS  Google Scholar 

  96. Xu, J. & P. Xie, 2004. Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios. Journal of Freshwater Ecology 19: 645–650.

    Google Scholar 

  97. Zhou, Q., P. Xie, J. Xu, Z.-X. Ke, L.-G. Guo & T. Cao, 2009. Seasonal variations in stable isotope ratios of two biomanipulation fishes and seston in a large pen culture in hypereutrophic Meiliang Bay, Lake Taihu. Ecological Engineering 35: 1603–1609.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers and A.M. Poulsen and Guest Editor Brian Moss for most valuable manuscript editing and Tinna Christensen for graphical assistance. The results described were obtained during the EU BIOMAN, EU EUROLIMPACS and EU WISER projects, and the CLEAR project (a Villum Kann Rasmussen Centre of Excellence Project). This study was also supported by the Research Council for Nature and Universe (272-08-0406), the STF project CRES and the Greenland Climate Research Centre. Moreover, MM, FTM, CI and NM received support from the SNI (Agencia Nacional de Investigación e Innovación, ANII, Uruguay). Monitoring of Swedish lakes was funded by the Swedish Environmental Protection Agency.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Erik Jeppesen or Mariana Meerhoff.

Additional information

We dedicate this manuscript to the memory of Jane Stougaard-Pedersen, a great and beloved colleague from the Freshwater Department, NERI.

Guest editors: M. Meerhoff, M. Beklioglu, R. Burks, F. García-Rodríguez, N. Mazzeo & B. Moss / Structure and Function of World Shallow Lakes: Proceedings from the 6th Shallow Lakes Congress, held in Punta del Este, Uruguay, 23–28 November, 2008

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeppesen, E., Meerhoff, M., Holmgren, K. et al. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646, 73–90 (2010). https://doi.org/10.1007/s10750-010-0171-5

Download citation

Keywords

  • Aquatic food webs
  • Sub-tropical lakes
  • Piscivory
  • Planktivory
  • Benthivory
  • Eutrophication
  • Salinisation
  • Biomanipulation