Skip to main content

Advertisement

Log in

An all-conquering ecological journey: from the sea, calanoid copepods mastered brackish, fresh, and athalassic saline waters

  • Review paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although it is commonly acknowledged that calanoid copepods inhabiting fresh water evolved from marine ancestors via the brackish water of estuaries, it is less well appreciated that a restricted number of species with freshwater affinities have conquered athalassic saline waters. The global importance of the latter habitat has been under-estimated and, with climate change and human population growth, it is expanding at the expense of fresh waters. Considering Australia, South America and the Holarctic, at least seven halobiontic calanoid species occur in athalassic saline waters (the situation in Africa is not visited). In Australian inland-water Centropagidae, there is a high degree of congruence between the ecological trend in habitat occupancy (marine through brackish and fresh to athalassic saline waters) and the assumed evolutionary trend towards reduction in the setation and segmentation of swimming legs. The validity of the inference by Adamowicz et al. (Biological Journal of the Linnean Society of London 90: 279–292, 2007a) that a hypothesis of oligomerization was not supported as the mode of evolution of South American non-marine Centropagidae is criticized for reasons of inadequate character sampling. The phylogeny, biogeography and osmo-regulatory physiology of Southern Hemisphere inland-water centropagids are reviewed in some detail. Calanoids have mastered a significant portion of the total salinity range for athalassic saline waters (3 to 300+ g l−1) but, unlike brine shrimps, they have not evolved a mechanism for hypo-osmotic regulation and do not tolerate saturated or near-saturated brines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamowicz, S. J., S. Menu-Marque, P. D. N. Hebert & A. Purvis, 2007a. Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina. Biological Journal of the Linnean Society of London 90: 279–292.

    Article  Google Scholar 

  • Adamowicz, S. J., S. Menu-Marque, S. Halse, J. Topan, T. Zemiak, J. D. S. Witt & P. D. N. Hebert, 2007b. Aportes de la filogenia molecular a la biogeografía de la familia Centropagidae (Crustacea, Copepoda, Calanoida). Darwiniana 45(Supplemento): 56–58.

    Google Scholar 

  • Alonso, M., 1990. Las lagunas de la España peninsular. Limnetica 15: 1–176.

    Google Scholar 

  • Alonso, M., 1998. Anostraca, Cladocera and Copepoda of Spanish saline lakes. Hydrobiologia 197: 221–231.

    Article  Google Scholar 

  • Anderson, R. S., 1970. Diaptomus (Leptodiaptomus) connexus Light 1938 in Alberta. Canadian Journal of Zoology 48: 41–47.

    Google Scholar 

  • Anderson, R. S., 1974. Crustacean plankton communities of 340 lakes and ponds in and near the national parks of the Canadian Rocky Mountains. Journal of the Fisheries Research Board of Canada 31: 855–869.

    Google Scholar 

  • Bayly, I. A. E., 1964. A new species of Isias (Copepoda: Calanoida) from the Brisbane River estuary, and a comparison of the Australasian centropagid genera. Australian Journal of Marine and Freshwater Research 15: 239–247.

    Article  Google Scholar 

  • Bayly, I. A. E., 1967. The general biological classification of aquatic environments with special reference to those of Australia. In Weatherley, A. H. (ed.), Australian Inland Waters and Their Fauna: Eleven Studies. ANU Press, Canberra: 78–104.

    Google Scholar 

  • Bayly, I. A. E., 1969a. The occurrence of calanoid copepods in athalassic saline waters in relation to salinity and anionic proportions. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 17: 449–455.

    Google Scholar 

  • Bayly, I. A. E., 1969b. The body fluids of some centropagid copepods: total concentration and amounts of sodium and magnesium. Comparative Biochemistry and Physiology 28: 1403–1409.

    Article  CAS  Google Scholar 

  • Bayly, I. A. E., 1972. Salinity tolerance and osmotic behaviour of animals in athalassic saline and marine hypersaline waters. Annual Review Ecology and Systematics 3: 233–268.

    Article  Google Scholar 

  • Bayly, I. A. E., 1991. On the concept and nature of athalassic (non-marine) saline waters. Salinet 5: 76–80.

    Google Scholar 

  • Bayly, I. A. E., 1992. The Non-marine Centropagidae (Copepoda: Calanoida) of the World. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 2. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Bayly, I. A. E., 1993. The fauna of athalassic saline waters in Australia and the Altiplano of South America: comparisons and historical perspectives. Hydrobiologia 267: 225–231.

    Article  Google Scholar 

  • Bayly, I. A. E., 1994. Gladioferens Henry (Copepoda: Calanoida) discovered in Antarctica; G. antarcticus sp. nov. described from a lake in the Bunger Hills. Polar Biology 14: 253–259.

    Article  Google Scholar 

  • Bayly, I. A. E., 1995. Distinctive aspects of the zooplankton of large lakes in Australasia, Antarctica and South America. Marine and Freshwater Research 46: 1109–1120.

    Article  Google Scholar 

  • Bayly, I. A. E. & P. Ellis, 1969. Haloniscus searlei Chilton: an aquatic “terrestrial” isopod with remarkable powers of osmotic regulation. Comparative Biochemistry and Physiology 31: 523–528.

    Article  Google Scholar 

  • Bayly, I. A. E. & D. W. Morton, 1978. Aspects of the zoogeography of Australian microcrustaceans. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 2537–2540.

    Google Scholar 

  • Bayly, I. A. E. & W. D. Williams, 1973. Inland Waters and their Ecology. Longman, Melbourne.

    Google Scholar 

  • Bayly, I. A. E., J. A. E. Gibson, B. Wagner & K. M. Swaldling, 2003. Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid species: Boeckella poppei and Gladioferens antarcticus. Antarctic Science 15: 439–448.

    Article  Google Scholar 

  • Beadle, L. C., 1974. The Inland Waters of Tropical Africa: An Introduction to Tropical Limnology. Longman, London.

    Google Scholar 

  • Borowitzka, L. J. & A. D. Brown, 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella: the role of glycerol as a compatible solute. Archives of Microbiology 96: 37–52.

    Article  CAS  Google Scholar 

  • Boxshall, G. A. & D. Jaume, 2000. Making waves: the repeated colonization of fresh water by copepod crustaceans. Advances in Ecological Research 31: 61–79.

    Article  Google Scholar 

  • Brand, G. W. & I. A. E. Bayly, 1971. A comparative study of osmotic regulation in four species of calanoid copepod. Comparative Biochemistry and Physiology (Series B) 38: 361–371.

    Article  Google Scholar 

  • Burg, M. B. & J. D. Ferraris, 2008. Intracellular organic osmolytes: function and regulation. Journal of Biological Chemistry 283: 7309–7313.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, H. & G. Hutching, 2007. In Search of Ancient New Zealand. Penguin Books, Rosedale, New Zealand.

    Google Scholar 

  • Cande, S. C. & J. M. Stock, 2004. Cenozoic reconstructions of the Australian–New Zealand–South Pacific sector of Antarctica. In Exon, N. F., J. P. Kennett & M. J. Malone (eds), The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica. [American Geophysical Union, Geophysical Monograph 151]: 5–17.

  • Castro, M. C., 2004. Caracterización limnológica y variabilidad temporal de la comunidad planctónica en Laguna Honda (Jaén). PhD Dissertation, Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén.

  • Defaye, D., 1998. Description of the first Boeckella (Copepoda, Calanoida, Centropagidae) from New Caledonia. Crustaceana 71: 686–699.

    Article  Google Scholar 

  • De Los Ríos, P. & P. Contreras, 2005. Salinity level and occurrence of centropagid copepods (Crustacea, Copepoda, Calanoida) in shallow lakes in Andes mountains and Patagonian plains, Chile. Polish Journal of Ecology. 53: 445–450.

    Google Scholar 

  • De Los Ríos, P. & J. Crespo, 2004. Salinity effects on Boeckella poopoensis abundances in Chilean Andean lakes (Copepoda, Calanoida). Crustaceana 77: 245–253.

    Article  Google Scholar 

  • Dogiel, V. A., 1954. Oligomerization of the homologous organs as one of the main paths in animal evolution. Leningrad University Press, Leningrad. [In Russian].

    Google Scholar 

  • Dussart, B. H. & D. Defaye, 2002. World Directory of Crustacea Copepoda of Inland Waters. I – Calaniformes. Backhuys Publishers, Leiden.

    Google Scholar 

  • Gibbs, G., 2006. Ghosts of Gondwana: The History of Life in New Zealand. Craig Potton Publishing, Nelson.

    Google Scholar 

  • Halse, S. A. & J. M. McRae, 2001. Calamoecia trilobata n. sp. (Copepoda: Calanoida) from salt lakes in south-western Australia. Journal of the Royal Society of Western Australia 84: 5–11.

    Google Scholar 

  • Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Junk, Dordrecht.

    Google Scholar 

  • Hebert, P. D. N., E. A. Remigio, J. K. Colbourne, D. J. Taylor & C. C. Wilson, 2002. Accelerated molecular evolution in halophilic crustaceans. Evolution 56: 909–926.

    PubMed  CAS  Google Scholar 

  • Hill, P. J. & N. F. Exon, 2004. Tectonics and basin development of the offshore Tasmanian area incorporating results from deep ocean drilling. In Exon, N. F., J. P. Kennett & M. J. Malone (eds), The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change between Australia and Antarctica. [American Geophysical Union, Geophysical Monograph 151]: 19–42.

  • Hutchinson, G. E., 1967. A Treatise on Limnology, Vol. II. Wiley, New York.

    Google Scholar 

  • Huys, R. & G. A. Boxshall, 1991. Copepod Evolution. The Ray Society, London.

    Google Scholar 

  • Jiménez-Melero, R., 2007. Population dynamics, demography and production of Arctodiaptomus salinus (Copepoda: Calanoida) in a saline endorheic pond. PhD Dissertation, Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén.

  • Kobayashi, T., 1993. Resource partitioning of Calamoecia lucasi Brady and Boeckella triarticulata (Thomson) (Copepoda: Calanoida) in an Australian reservoir. Hydrobiologia 254: 35–42.

    Article  Google Scholar 

  • Livermore, R., C.-D. Hillenbrand, M. Meredith & G. Eagles, 2007. Drake passage and cenozoic climate: an open and shut case? Geochemistry, Geophysics and Geosysems 8: Q01005.

  • López-González, P., F. Guerrero & M. C. Castro, 1998. Seasonal fluctuations in the plankton community in a hypersaline temporary lake (Honda, southern Spain). International Journal of Salt Lake Research 6: 353–371.

    Google Scholar 

  • Maly, E. J., 1996. A review of relationships among centropagid copepod genera and some species found in Australasia. Crustaceana 69: 727–733.

    Article  Google Scholar 

  • Martino, P., 1988. Limnología de las lagunas salinas españolas. Ph D Dissertation, Departamento de Ecología, Universidad Autónoma de Madrid.

  • Ong, J. E., 1969. The fine structure of the mandibular sensory receptors in the brackish water calanoid copepod Gladioferens pectinatus (Brady). Zeitschrift für Zellforschung 97: 178–195.

    Article  CAS  Google Scholar 

  • Reid, J. W., I. A. E. Bayly, G. L. Pesce, N. A. Rayner, Y. R. Reddy, C. E. F. Rocha, E. Suárez-Morales & H. Ueda, 2002. Conservation of continental copepod Crustaceans. In Escobar-Briones, E. & F. Alvarez (eds), Modern Approaches to the Study of Crustacea. Kluwer, Dordrecht: 253–261.

    Google Scholar 

  • Timms, B. V., 1993. Saline lakes of the Paroo, inland New South Wales, Australia. Hydrobiologia 267: 267–289.

    Article  Google Scholar 

  • Williams, W. D., 1986. Limnology, the study of inland waters: a comment on perceptions of studies of salt lakes, past and present. In De Deckker, P. & W. D. Williams (eds), Limnology in Australia. CSIRO Australia, Melbourne: 471–484.

    Google Scholar 

  • Williams, W. D., 1988. Limnological imbalances: an antipodean viewpoint. Freshwater Biology 20: 407–420.

    Article  Google Scholar 

  • Williams, W. D., 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337.

    Article  Google Scholar 

  • Williams, W. D. & J. E. Sherwood, 1994. Definition and measurement of salinity in salt lakes. International Journal of Salt Lake Research 3: 53–63.

    Article  Google Scholar 

Download references

Acknowledgements

On request, Prof. P. De Deckker and Dr. J. A. E. Gibson kindly supplied one of us (IAEB) with some of the important geological literature. Dr. Francisco Guerrero Ruiz of the Universidad de Jaén in Spain kindly provided us with relevant data concerning the biology of Arctodiaptomus salinus in Spain. We thank Mr. G. Dempster for transforming a rough draft of Fig. 1 into the finished product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Boxshall.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayly, I.A.E., Boxshall, G.A. An all-conquering ecological journey: from the sea, calanoid copepods mastered brackish, fresh, and athalassic saline waters. Hydrobiologia 630, 39–47 (2009). https://doi.org/10.1007/s10750-009-9797-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9797-6

Keywords

Navigation