Skip to main content

Advertisement

Log in

Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem

  • UPPER MISSISSIPPI RIVER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e.g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in, and transport by, the UMR, but the impacts of mitigation efforts will likely be only slowly realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, R. B., R. A. Smith & G. E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403: 758–761.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, R. B., R. A. Smith & G. E. Schwarz, 2004. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model. Water Science and Technology 49: 1–10.

    CAS  PubMed  Google Scholar 

  • Alexander, R. B., R. A. Smith, G. E. Schwarz, E. W. Boyer, J. V. Nolan & J. W. Brakebill, 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science and Technology 42: 822–830.

    Article  CAS  PubMed  Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Article  Google Scholar 

  • Ankley, G. T., M. K. Schubauer-Berigan & P. D. Monson, 1995. Influence of pH and hardness on toxicity of ammonia to the amphipod Hyalella azteca. Canadian Journal of Fisheries and Aquatic Sciences 52: 2078–2083.

    Article  CAS  Google Scholar 

  • Baker, S. M. & D. J. Hornbach, 1997. Acute physiological effects of zebra mussels (Dreissena polymorpha) infestation on two unionid mussels, Actinonais ligamentina and Amblema plicata. Canadian Journal of Fisheries and Aquatic Sciences 54: 512–519.

    Article  Google Scholar 

  • Bartsch, M. R., T. J. Newton, J. W. Allran, T. A. O’Donnell & W. B. Richardson, 2003. Effects of pore-water ammonia on in situ survival and growth of juvenile unionids (Lampsilis cardium) in the St. Croix Riverway, Wisconsin, USA. Environmental Toxicology and Chemistry 22: 2561–2568.

    Article  CAS  PubMed  Google Scholar 

  • Benke, A. C. & J. B. Wallace, 1997. Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology 78: 1132–1145.

    Google Scholar 

  • Bonetto, C., L. Decabo, N. Gabellone, A. Vinocur, J. Donadelli & F. Unrein, 1994. Nutrient dynamics in the deltaic floodplain of the Lower Parana River. Archiv Fur Hydrobiologie 131: 277–295.

    CAS  Google Scholar 

  • Bowes, M. J., W. A. House & R. A. Hodgkinson, 2003. Phosphorus dynamics along a river continuum. Science of the Total Environment 313: 199–212.

    Article  CAS  PubMed  Google Scholar 

  • Bowes, M. J., J. T. Smith, H. P. Jarvie & C. Neal, 2008. Modelling of phosphorus inputs to rivers from diffuse and point sources. Science of the Total Environment 395: 125–138.

    Article  CAS  PubMed  Google Scholar 

  • Brett, M. T., D. C. Muller-Navarra, A. P. Ballantyne, J. L. Ravet & C. R. Goldman, 2006. Daphnia fatty acid composition reflects that of their diet. Limnology and Oceanography 51: 2428–2437.

    CAS  Google Scholar 

  • Bruesewitz, D. A., J. L. Tank, M. J. Bernot, W. B. Richardson & E. A. Strauss, 2006. Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River. Canadian Journal of Fisheries and Aquatic Sciences 63: 957–969.

    Article  CAS  Google Scholar 

  • Carey, A. E., W. B. Lyons, J. C. Bonzongo & J. C. Lehrter, 2001. Nitrogen budget in the Upper Mississippi River watershed. Environmental & Engineering Geoscience 7: 251–265.

    Google Scholar 

  • Cavanaugh, J. C., W. B. Richardson, E. A. Strauss & L. A. Bartsch, 2006. Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River. River Research and Applications 22: 1–17.

    Article  Google Scholar 

  • Dagg, M. J. & G. A. Breed, 2003. Biological effects of Mississippi River nitrogen on the Northern Gulf of Mexico—a review and synthesis. Journal of Marine Systems 43: 133–152.

    Article  Google Scholar 

  • Dalzell, B. J., P. H. Gowda & D. J. Mulla, 2004. Modeling sediment and phosphorus losses in an agricultural watershed to meet TMDLs. Journal of the American Water Resources Association 44: W12414.

    Google Scholar 

  • Delong, M. D., this volume. Food Webs and the Upper Mississippi River: contributions to our understanding of ecosystem function in large rivers. doi:10.1007/s10750-009-0065-6

  • Dodds, W. K., W. W. Bouska, J. L. Eitzmann, T. J. Pilger, K. L. Pitts, A. J. Riley, J. T. Schloesser & D. J. Thornbrugh, 2009. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science and Technology 43: 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Donner, S. D., 2003. The impact of cropland cover on river nutrient levels in the Mississippi River Basin. Global Ecology and Biogeography 12: 341–355.

    Article  Google Scholar 

  • Donner, S. D., 2007. Surf or turf: a shift from feed to food cultivation could reduce nutrient flux to the Gulf of Mexico. Global Environmental Change 17: 105–113.

    Article  Google Scholar 

  • Donner, S. D. & C. J. Kucharik, 2003. Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Global Biogeochemical Cycles 17: 1085. doi:10.1029/2001GB1808.

    Article  CAS  Google Scholar 

  • Donner, S. D. & C. J. Kucharik, 2008. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proceedings of the National Academy of Sciences 105: 4513–4518.

    Article  CAS  Google Scholar 

  • Donner, S. D. & D. Scavia, 2007. How climate controls the flux of nitrogen by the Mississippi River and the development of hypoxia in the Gulf of Mexico. Limnology and Oceanography 52: 856–861.

    Article  CAS  Google Scholar 

  • Donner, S. D., M. T. Coe, J. D. Lenters, T. E. Twine & J. A. Foley, 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin From 1955 to 1994. Global Biogeochemical Cycles 16: 1043. doi:10.1029/2001GB00396.

    Article  CAS  Google Scholar 

  • Donner, S. D., C. J. Kucharik & J. A. Foley, 2004. Impact of changing land use practices on nitrate export by the Mississippi River. Global Biogeochemical Cycles 18: GB1028. doi:10.1029/2003GB002093.

  • Downing, J. A., D. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.

    Article  Google Scholar 

  • Duff, J. H. & F. J. Triska, 2000. Nitrogen biogeochemistry and surface—subsurface exchange in streams. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego, CA: 197–217.

    Chapter  Google Scholar 

  • Edlund, M. B., D. R. Engstrom, L. D. Triplett, B. M. Lafrancois & P. R. Leavitt, 2009. Twentieth century eutrophication of the St. Croix River (Minnesota-Wisconsin, USA) reconstructed from the sediments of its natural impoundment. Journal of Paleolimnology 41: 641–657.

    Article  Google Scholar 

  • Engstrom, D. R., J. E. Almendinger & J. A. Wolin, 2009. Historical changes in sediment and phosphorus loading to the Upper Mississippi River: mass-balance reconstructions from the sediments of Lake Pepin. Journal of Paleolimnology 41: 563–588.

    Article  Google Scholar 

  • Frazier, B. E., T. J. Naimo & M. B. Sandheinrich, 1996. Temporal and vertical distribution of total ammonia nitrogen and un-ionized ammonia nitrogen in sediment pore water from the Upper Mississippi River. Environmental Toxicology and Chemistry 15: 92–99.

    Article  CAS  Google Scholar 

  • Fremling, C. R., 2005. Immortal River: The Upper Mississippi in Ancient and Modern Times. University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Froelich, P. N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography 33: 649–668.

    Article  CAS  Google Scholar 

  • Goolsby, D. A. & W. A. Battaglin, 2001. Long-term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrological Processes 15: 1209–1226.

    Article  Google Scholar 

  • Guhr, H., D. Spott, G. Bormiki, M. Baborowski & B. Karrasch, 2003. The effects of nutrient concentration in the River Elbe. Acta Hydrochimica et Hydrobiologica 31: 282–296.

    Article  CAS  Google Scholar 

  • Hamilton, S. K. & W. M. Lewis, 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River Floodplain, Venezuela. Archiv Fur Hydrobiologie 119: 393–425.

    CAS  Google Scholar 

  • Heiler, G., T. Hein & F. Schiemer, 1995. Hydrological connectivity and flood pulses as the central aspects for the integrity of a river–floodplain system. Regulated Rivers: Research and Management 11: 351–361.

    Article  Google Scholar 

  • Hernandez, M. E. & W. J. Mitsch, 2006. Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands 26: 862–877.

    Article  Google Scholar 

  • Hilton, J., M. O’Hare, M. J. Bowes & J. I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.

    Article  CAS  PubMed  Google Scholar 

  • Hinterleitner-Anderson, D., A. E. Hershey & J. A. Schuldt, 1992. The effects of river fertilization on mayfly (Baetis sp.) drift patterns and population density in an arctic river. Hydrobiologia 240: 247–258.

    Google Scholar 

  • House, W. A. & M. S. Warwick, 1998. A mass-balance approach to quantifying the importance of in-stream processes during nutrient transport in a large river catchment. The Science of the Total Environment 210(211): 139–152.

    Google Scholar 

  • Houser, J. N. (ed.), 2005. Multiyear synthesis of limnological data from 1993 to 2001 for the Long Term Resource Monitoring Program. U.S. Geological Survey, Upper Midwest Environment Sciences Center, La Crosse, Wisconsin, March 2005. LTRMP Technical Report 2005-T003: 59 pp (NTIS PB2005-105228).

  • Houser, J. N., D. W. Bierman, R. M. Burdis & L. A. Soeken-Gittinger. Large-scale longitudinal and seasonal patterns in nutrients, chlorophyll, and suspended solids in a large floodplain river: the Upper Mississippi River from Lake City, MN to Cairo, IL. In review.

  • Huff, D. R., 1986. Phytoplankton communities in Navigation Pool No. 7 of the Upper Mississippi River. Hydrobiologia 136: 47–56.

    Article  Google Scholar 

  • Humborg, C., V. Ittekkot, A. Cociasu & B. Vonbodungen, 1997. Effect of Danube River Dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.

    Article  CAS  Google Scholar 

  • James, W. F. & J. W. Barko, 2004. Diffusive fluxes and equilibrium processes in relation to phosphorus dynamics in the Upper Mississippi River. River Research and Applications 20: 473–484.

    Article  Google Scholar 

  • James, W. F. & C. E. Larson, 2008. Phosphorus dynamics and loading in the turbid Minnesota River (USA): controls and recycling potential. Biogeochemistry 90: 75–92.

    Article  CAS  Google Scholar 

  • James, W. F., J. W. Barko & H. L. Eakin, 1995. Internal phosphorus loading in Lake Pepin, Upper Mississippi River. Journal of Freshwater Ecology 10: 269–276.

    CAS  Google Scholar 

  • James, W. F., J. W. Barko, M. Davis, H. L. Eakin, J. T. Rogala & A. C. Miller, 2000. Filtration and excretion by zebra mussels: implications for water quality impacts in Lake Pepin, Upper Mississippi River. Journal of Freshwater Ecology 15: 429–437.

    CAS  Google Scholar 

  • James, W. F., J. W. Barko & H. L. Eakin, 2004. Impacts of sediment dewatering and rehydration on sediment nitrogen concentration and macrophyte growth. Canadian Journal of Fisheries and Aquatic Sciences 61: 538–546.

    Article  Google Scholar 

  • James, W. F., W. B. Richardson & D. M. Soballe, 2008a. Contribution of sediment fluxes and transformations to the summer nitrogen budget of an Upper Mississippi River backwater system. Hydrobiologia 598: 95–107.

    Article  CAS  Google Scholar 

  • James, W. F., W. B. Richardson & D. M. Soballe, 2008b. Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters. River Research and Applications. doi:10.1002/rra.1150.

  • Jones, J. I., J. O. Young, J. W. Eaton & B. Moss, 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology 90: 12–24.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The Flood Pulse Concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Justić, D., N. N. Rabalais & R. E. Turner, 2003. Simulated responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading. Journal of Marine Systems 42: 115–126.

    Article  Google Scholar 

  • Kloiber, S. M., 2006. Estimating nonpoint source pollution for the Twin Cities metropolitan area using landscape variables. Water, Air and Soil Pollution 172: 313–335.

    Article  CAS  Google Scholar 

  • Knowlton, M. F. & J. R. Jones, 1997. Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17: 468–475.

    Article  Google Scholar 

  • Lafrancois, B. M., S. Magdalene & D. K. Johnson, 2009. Recent water quality trends and a comparison to sediment-core records for two riverine lakes of the Upper Mississippi River basin: Lake St. Croix and Lake Pepin. Journal of Paleolimnology 41: 603–622.

    Article  Google Scholar 

  • Lane, R. R., J. W. Day, D. Justić, E. Reyes, B. Marx, J. N. Day & E. Hyfield, 2004. Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted through coastal wetlands to the Gulf of Mexico. Estuarine Coastal and Shelf Science 60: 1–10.

    Article  CAS  Google Scholar 

  • Lane, R. R., J. W. Day, G. P. Kemp & D. K. Demcheck, 2001. The 1994 Experimental opening of the Bonnet Carre spillway to divert Mississippi River water into Lake Pontchartrain, Louisiana. Ecological Engineering 17: 411–422.

    Article  Google Scholar 

  • Lung, W. S. & C. E. Larson, 1995. Water quality modeling of Upper Mississippi River and Lake Pepin. Journal of Environmental Engineering – ASCE 121: 691–699.

    Article  CAS  Google Scholar 

  • Mainstone, C. P. & W. Parr, 2002. Phosphorus in rivers—ecology and management. Science of the Total Environment 282: 25–47.

    Article  Google Scholar 

  • McHenry, J. R., J. C. Ritchie, C. M. Cooper & J. Verdon, 1984. Recent rates of sedimentation in the Mississippi River. In Wiener, J. G., R. V. Anderson & D. R. McConville (eds), Contaminants in the Upper Mississippi River: Proceedings of the 15th Annual Meeting of the Mississippi River Research Consortium. Butterworth Publishers, Stoneham, MA: 99–117.

    Google Scholar 

  • McIsaac, G. F. & X. T. Hu, 2004. Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage. Biogeochemistry 70: 251–271.

    Article  CAS  Google Scholar 

  • McIsaac, G. F., M. B. David, G. Z. Gertner & D. A. Goolsby, 2001. Nitrate flux in the Mississippi River. Nature 414: 166–167.

    Article  CAS  PubMed  Google Scholar 

  • Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2001. Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico. Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Available from http://oceanservice.noaa.gov/products/hypox_final.pdf.

  • Mitsch, W. J., J. W. Day, J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall & N. M. Wang, 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: strategies to counter a persistent ecological problem. Bioscience 51: 373–388.

    Article  Google Scholar 

  • Mitsch, W. J., J. W. Day, L. Zhang & R. R. Lane, 2005. Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecological Engineering 24: 267–278.

    Article  Google Scholar 

  • Moore, M., S. P. Romano & T. Cook, this volume. Synthesis of Upper Mississippi River System submersed and emergent aquatic vegetation: past, present, and future. doi:10.1007/s10750-009-0062-9

  • Newton, T. J. & M. R. Bartsch, 2007. Assessing contaminant sensitivity of early life stages of freshwater mussels (Unionidae): lethal and sublethal effects of ammonia to juvenile Lampsilis mussels in sediment and water-only exposures. Environmental Toxicology and Chemistry 26: 2057–2065.

    Article  CAS  PubMed  Google Scholar 

  • Neal, C., H. P. Jarvie, A. Love, M. Neal, H. Wickham & S. Harman, 2008. Water quality along a river continuum subject to point and diffuse sources. Journal of Hydrology 350: 154–165.

    Article  CAS  Google Scholar 

  • Owens, J. L. & W. G. Crumpton, 1995. Primary production and light dynamics in an upper Mississippi River backwater. Regulated Rivers: Research and Management 11: 185–192.

    Article  Google Scholar 

  • Panno, S. V., K. C. Hackley, W. R. Kelly & H. H. Hwang, 2006. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois. Journal of Environmental Quality 35: 495–504.

    Article  CAS  PubMed  Google Scholar 

  • Rabalais, N. N., W. J. Wiseman, R. E. Turner, B. K. Sengupta & Q. Dortch, 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19: 386–407.

    Article  CAS  Google Scholar 

  • Randall, G. W. & D. A. Mulla, 2001. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. Journal of Environmental Quality 30: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Ravet, J. L. & M. T. Brett, 2006. Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction. Limnology and Oceanography 51: 2438–2452.

    Article  CAS  Google Scholar 

  • Richardson, W. B., E. A. Strauss, L. A. Bartsch, E. M. Monroe, J. C. Cavanaugh, L. Vingum & D. Soballe, 2004. Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate flux. Canadian Journal of Fisheries and Aquatic Sciences 61: 1102–1112.

    Article  CAS  Google Scholar 

  • Royer, T. V., M. B. David & L. E. Gentry, 2006. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River. Environmental Science and Technology 40: 4126–4131.

    Article  CAS  PubMed  Google Scholar 

  • Rublee, P. A. & A. Partusch-Talley, 1995. Microfaunal responses to fertilization of an arctic tundra stream. Freshwater Biology 34: 81–90.

    Article  Google Scholar 

  • Scavia, D. & K. A. Donnelly, 2007. Reassessing hypoxia forecasts for the Gulf of Mexico. Environmental Science and Technology 41: 8111–8117.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Schubauer-Berigan, M. K., P. D. Monson, C. W. West & G. T. Ankley, 1995. Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus. Environmental Toxicology and Chemistry 14: 713–717.

    Article  CAS  Google Scholar 

  • Slavik, K., B. J. Peterson, L. A. Deegan, W. B. Bowden, A. E. Hershey & J. E. Hobbie, 2004. Long-term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology 85: 939–954.

    Article  Google Scholar 

  • Soballe, D. M. & J. R. Fischer, 2004. Long Term Resource Monitoring Program Procedures: Water quality monitoring. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI. Technical Report LTRMP 2004-T002-1 (Ref. 95-P002-5). 73 pp + Appendixes A–J. Available from http://www.umesc.usgs.gov/documents/reports/2004/04t00201.pdf.

  • Sparks, R. E. & M. J. Sandusky, 1981. Identification of factors responsible for decreased production of fish food organisms in the Illinois and Mississippi Rivers. Final Report for Project No. 3-291-R, Illinois Natural History Survey, River Research Laboratory, Havana, IL.

  • Strauss, E. A., W. B. Richardson, L. A. Bartsch, J. C. Cavanaugh, D. A. Buresewitz, H. Imker, H. A. Heinz & D. M. Soballe, 2004. Nitrification in the Upper Mississippi River: patterns, controls, and contribution to NO3 budget. Journal of the North American Benthological Society 23: 1–14.

    Article  Google Scholar 

  • Strauss, E. A., W. B. Richardson, J. C. Cavanaugh, L. A. Bartsch, R. M. Kreiling & A. J. Standorf, 2006. Variability and regulation of denitrification in an Upper Mississippi River backwater. Journal of the North American Benthological Society 25: 596–606.

    Article  Google Scholar 

  • Sullivan, J. F., 2008. The use of metaphyton to evaluate nutrient impairment and proposed nutrient criteria for wetlands and backwaters in the Upper Mississippi River. Wisconsin Department of Natural Resources Report. La Crosse, WI.

  • Sylvan, J. B., Q. Dortch, D. M. Nelson, A. F. M. Brown, W. Morrison & J. W. Ammerman, 2006. Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environmental Science & Technology 40: 7548–7553.

    Article  CAS  Google Scholar 

  • Theiling, C. H. & J. M. Nestler, this volume. River stage response to alteration of Upper Mississippi River channels, floodplains, and watersheds. doi:10.1007/s10750-009-0066-5

  • Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer & J. V. Ward, 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwater Biology 41: 521–535.

    Article  Google Scholar 

  • Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.

    Article  Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 1991. Changes in Mississippi River water quality this century. BioScience 41: 140–147.

    Article  Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 1994. Coastal eutrophication near the Mississippi River Delta. Nature 368: 619–621.

    Article  Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 2004. Suspended sediment, C, N, P, and Si yields from the Mississippi River Basin. Hydrobiologia 511: 79–89.

    Article  CAS  Google Scholar 

  • USEPA, 2000. Upper Mississippi River Case Study. In Progress in Water Quality: An Evaluation of the National Investment in Municipal Wastewater Treatment. U.S. Environmental Protection Agency. Office of Water, Washington, D.C. EPA-832-R-00-008. Available from http://www.epa.gov/OWM/wquality/benefits.htm.

  • Vaughn, C. C., K. B. Gido & D. E. Spooner, 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 527: 35–47.

    Article  Google Scholar 

  • Wade, A. J., P. G. Whitehead, G. M. Hornberger & D. J. Snook, 2002. On modelling the flow controls on macrophyte and epiphyte dynamics in a lowland permeable catchment: the River Kennet, Southern England. Science of the Total Environment 282: 375–393.

    Article  PubMed  Google Scholar 

  • Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.

    Article  Google Scholar 

  • Wasley, D., 2000. Concentration and movement of nitrogen and other materials in selected reaches and tributaries of the Upper Mississippi River System. MS Thesis, University of Wisconsin-La Crosse.

  • Water Level Management Task Force (WLMTF), 2007. Summary of results of the Pool 5 and Pool 8 draw downs on the Upper Mississippi River. River Resources Forum, US Fish and Wildlife Service.

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Elsevier Academic Press, San Diego, CA.

    Google Scholar 

  • Wilcox, D. B, 1993. An aquatic habitat classification system for the Upper Mississippi River System. U.S. Fish and Wildlife Service. EMTC 93-T003. 9 pp + Appendix A (NTIS PB93-208981). Available from http://www.umesc.usgs.gov/documents/reports/1993/93t003.pdf [accessed 2 June 2009].

  • Wilson, D. M., T. J. Naimo, J. G. Wiener, R. V. Anderson, M. B. Sandheinrich & R. E. Sparks, 1995. Declining populations of the fingernail clam Musculium transversum in the upper Mississippi River. Hydrobiologia 304: 209–220.

    Article  Google Scholar 

  • Wollheim, W. M., B. J. Peterson, S. M. Thomas, C. H. Hopkinson & C. J. Vorosmarty, 2008. Dynamics of N removal over annual time periods in a suburban river network. Journal of Geophysical Research-Biogeosciences 113: G03038.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Brenda Moraska Lafrancois and Cailin Huyck Orr for thorough and thoughtful reviews of previous drafts of this article. We also thank J. C. Nelson for construction of Fig. 1. Figs. 4 and 6 were modified from those originally created by Eric Strauss.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Houser.

Additional information

Guest editors: S. P. Romano & B. Ickes / Upper Mississippi River Research Synthesis: Forty Years of Ecological Research Synthesis: Forty Years of Ecological Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houser, J.N., Richardson, W.B. Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640, 71–88 (2010). https://doi.org/10.1007/s10750-009-0067-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0067-4

Keywords

Navigation