Skip to main content

Advertisement

Log in

From the light to the darkness: thriving at the light extremes in the oceans

  • PHYTOPLANKTON
  • Review paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Light-acclimation processes are central to allowing photosynthesis in aquatic ecosystems to span from high light conditions, that are 10-fold higher than the light levels required to saturate photosynthesis, to the deep sea with extremely low light levels. In dim light systems, nutrient levels are often high, and cells maximize the absorption of light by increasing the cellular pool of pigments. The upper limits of light absorption are constrained by the package effect, which ultimately restricts the benefit of the light absorption associated with an increase in cellular pigmentation, thus decreasing the cost/benefit ratio relative to the metabolic cost of manufacturing cellular light-harvesting pigments. At extremely low light levels in the deep sea, chloroplasts are sequestered in numerous organisms; however, these species are not obligate autotrophs and supplement a heterotrophic/mixotrophic existence with opportunistic autotrophy. While low light acclimation is based on maximizing light absorption, photosynthetic systems under high light, in addition to decreased light-harvesting cross sections, rely on energy-dissipation processes to avoid light-induced damage to the photosynthetic apparatus and other free radical susceptible cell structures. Dissipation of excess light energy represents the largest sink of the absorbed light in high light environments; however, these processes remain largely unstudied and are rarely quantified. Cells supplement their energy-dissipation processes through increasing the capacity to remove high-light-generated radicals and/or inducing vertical movement. Improved understanding of strategies remains central for the understanding of algal distributions in nature and has broad industrial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Applying a range of diffuse attenuation coefficients spanning oligotrophic waters to turbid coastal waters (Mobley, 1994), the euphotic zone depth (1% light level) and the depth at which incident light was equal to Ek were calculated. For this calculation, we used the upper limit estimate of the surface light flux of 2374 μmol m−2 s−1.

References

  • Apt, K. E. & P. W. Behrens, 1999. Commercial developments in microalgal biotechnology. Journal of Phycology 35: 215–226.

    Google Scholar 

  • Aro, E. M., S. McCaffery & J. M. Anderson, 1993. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiology 103: 835–843.

    CAS  PubMed  Google Scholar 

  • Asada, K., 1999. The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review Plant Physiology Plant Molecular Biology 50: 601–639.

    CAS  Google Scholar 

  • Babin, M., A. Morel & R. Gagnon, 1994. An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters. Limnology and Oceanography 39: 694–702.

    Google Scholar 

  • Baker, N. R. & J. R. Bowyer, 1992. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios, Oxford.

    Google Scholar 

  • Baroli, I. & K. K. Niyogi, 2000. Molecular genetics of xanthophyll-dependent photoprotection in green and plants. Philosophical Transactions of the Royal Society 355: 1385–1394.

    CAS  Google Scholar 

  • Beatty, T. J., J. Overmann, M. T. Lince, A. K. Manske, A. S. Lang, R. E. Blankenship, C. L. Van Dover, T. A. Martinson & F. G. Plumley, 2005. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Sciences 102: 9306–9310.

    CAS  Google Scholar 

  • Behrenfeld, M. J., O. Prasil, M. Babin & F. Bruyant, 2004. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. Journal of Phycology 40: 4–25.

    CAS  Google Scholar 

  • Ben Amotz, A. & M. Avron, 1992. Dunaliella: Physiology, Biochemistry and Biotechnology. CRC Press, Sarasota.

    Google Scholar 

  • Bergmann, T., G. Fahnensteil, S. Lohrenz, D. F. Millie & O. Schofield, 2004. The effect of a spring turbidity event on spectral light fields and phytoplankton community dynamics. Journal of Geophysical Research 109: C10, C10S15.

  • Berner, T., Z. Dubinsky, K. Wyman & P. G. Falkowski, 1989. Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae). Journal of Phycology 25: 70–78.

    CAS  Google Scholar 

  • Bernhard, J. M. & S. S. Bowser, 1999. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Science Reviews 46: 149–165.

    CAS  Google Scholar 

  • Bernhard, J. M., K. R. Buck, M. A. Farmer & S. S. Bowser, 2000. The Santa Barbara Basin is a symbiosis oasis. Nature 403: 77–80.

    CAS  PubMed  Google Scholar 

  • Bidigare, R. R., B. B. Prezelin & R. C. Smith, 1992. Bio-optical models and the problems of scaling. In Falkowski, P. G., A. Woodhead & K. Vivirito (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 175–212.

    Google Scholar 

  • Björn, L. O., 1995. Effect of back reactions in the S-cycle on photosynthesis in very weak light. Photosynthesis Research 46: 203–206.

    Google Scholar 

  • Blankenship, R. E. & K. Matsuura, 2003. Antenna complexes from green photosynthetic bacteria. In Green, B. R. & W. W. Parson (eds), Light-Harvesting Antennas. Kluwer, Dordrecht: 195–217.

    Google Scholar 

  • Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal Biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Boveris, A. & E. Cadenas, 1982. Production of superoxide radicals and hydrogen peroxide in mitochondria. In Oberley, L. W. (ed.), Superoxide Dismutase. CRC, Boca Raton: 15–30.

    Google Scholar 

  • Bricaud, A. & A. Morel, 1986. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Applied Optics 25: 571–580.

    CAS  PubMed  Google Scholar 

  • Bricaud, A., A. Morel & L. Prieur, 1983. Optical efficiency factors of some phytoplankters. Limnology and Oceanography 28: 816–832.

    Article  Google Scholar 

  • Bricaud, A., A. L. Bedhomme & A. Morel, 1988. Optical properties of diverse phytoplanktonic species: experimental result and theoretical interpretation. Journal of Plankton Research 10: 851–873.

    CAS  Google Scholar 

  • Chai, J. & J. J. Lee, 2000. Recognition, establishment and maintenance of diatom endosymbiosis in foraminifera. Micropaleontology 46: 182–195.

    Google Scholar 

  • Chaumont, D., 1993. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. Journal Applied Phycology 5: 593–604.

    Google Scholar 

  • Chen, Y. B., D. G. Durnford, M. Koblizek & P. G. Falkowski, 2004. Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta 1. Plant Physiology. doi:10.1104/pp.104.038919.

  • Chen, Y. B., B. Dominic, S. Zani, M. T. Mellon & J. P. Zehr, 1999. Expression of photosynthesis genes in relation to nitrogen fixation in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp IMS 101. Plant Molecular Biology 41: 89–104.

    CAS  PubMed  Google Scholar 

  • Correia, M. J. & J. J. Lee, 2000. Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis 29: 343–355.

    Google Scholar 

  • Cullen, J. J., 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fishery Aquatic Science 39: 791–803.

    CAS  Google Scholar 

  • Cullen, J. J. & M. R. Lewis, 1988. The kinetics of algal photoadaption in context of vertical mixing. Journal of Plankton Research 10: 1039–1063.

    Google Scholar 

  • Cullen, J., X. Yang & H. L. MacIntyre, 1992. Nutrient limitation and marine photosynthesis. In Falkowski, P. G. (ed.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, London: 69–88.

    Google Scholar 

  • De la Noue, J. & N. De Pauw, 1988. The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechology Advances 6: 725–770.

    Google Scholar 

  • Demers, S., S. Roy, R. Gagnon & C. Vignault, 1991. Rapid light-induced changes in cell fluorescence and in xanthophyll-light cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photoprotection mechanism. Marine Ecology Progress Series 76: 185–193.

    Google Scholar 

  • Demmig, B., K. Winter, A. Kruger & F. C. Czygan, 1987. Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissapation of exess light energy. Plant Physiology 84: 218–224.

    CAS  PubMed  Google Scholar 

  • Demmig-Adams, B., 1990. Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochimica Biophysica Acta 1020: 1–24.

    CAS  Google Scholar 

  • Demmig-Adams, B. & W. W. Adams III, 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology Plant Molecular Biology 43: 599–626.

    CAS  Google Scholar 

  • Denman, K. L. & A. E. Gargett, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology and Oceanography 28: 801–815.

    Google Scholar 

  • Dimier, C., C. Federico, S. Giovanni & B. Christophe, 2007. Photophysiological properties of the marine picoeukaryote Picochlorum RCC 237 (Trebouxiophyceae, Chlorophyta). Journal of Phycology 43: 275–295.

    CAS  Google Scholar 

  • Dinsdale, M. T. & A. E. Walsby, 1972. The interrelations of cell turgor pressure, gasvacuolation, and buoyancy in blue-green alga. Journal of Experimental Biology 23: 561–570.

    Google Scholar 

  • Doucha, J. & K. LiÅLvanský, 1995. Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Algological Studies 76: 129–147.

    Google Scholar 

  • Doucha, J., F. Straka & K. LiÅLvanský, 2005. Utilization of flue gas for cultivation microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal Applied of Phycology 17: 403–412.

    Google Scholar 

  • Dubinsky, Z. & P. L. Jokiel, 1994. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pacific Sciences 48: 313–324.

    Google Scholar 

  • Dubinsky, Z., P. G. Falkowski & K. Wyman, 1986. Light harvesting and utilization in phytoplankton. Plant Cellular Physiology 27: 1335–1350.

    CAS  Google Scholar 

  • Dubinsky, Z., R. Matsukawa & I. Karube, 1995. Photobiological aspects of algal mass culture. Journal of Marine Biotechnology 2: 61–65.

    Google Scholar 

  • Dubinsky, Z., J. Feitelson & D. C. Mauzerall, 1998. Listening to phytoplankton: measuring biomass and photosynthesis by photoacoustics. Journal of Phycology 34: 888–892.

    Google Scholar 

  • Durnford, D. G. & P. G. Falkowski, 1997. Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynthesis Research 53: 229–241.

    CAS  Google Scholar 

  • Eisner, L. B., M. S. Twardowski & T. J. Cowles, 2003. Resolving phytoplankton photoprotective: photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements. Limnology and Oceanography 48: 632–646.

    Article  CAS  Google Scholar 

  • Eppley, R. W., O. Holm-Hansen & J. D. H. Strickland, 1968. Some observations on the vertical migration of dinoflagellates. Journal of Phycology 4: 333–340.

    Google Scholar 

  • Erez, J., 1990. On the importance of food sources in coral reef ecosystems. In Dubinsky, Z. (ed.), Coral Reefs. Elsevier, New York: 411–418.

    Google Scholar 

  • Escoubas, J.-M., M. Lomas, J. LaRoche & P. G. Falkowski, 1995. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proceedings of the National Academy of Sciences USA 92: 10237–10241.

    CAS  Google Scholar 

  • Evans, J. R. & H. Porter, 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environment 24: 755–767.

    CAS  Google Scholar 

  • Evens, T. J., G. J. Kirkpatrick, D. F. Millie, D. J. Chapman & O. Schofield, 2001. Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight. Journal of Plankton Research 23: 1177–1193.

    CAS  Google Scholar 

  • Falkowski, P. G., 1980. Primary Productivity of the Sea. Plenum, New York.

    Google Scholar 

  • Falkowski, P. G., 1984. Physiological responses of phytoplankton to natural light regimes. Journal of Plankton Research 6: 295–307.

    Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Acclimation to spectral irradiance in algae. Journal of Phycology 27: 8–14.

    Google Scholar 

  • Falkowski, P. G. & T. G. Owens, 1980. Light shade adaptation: two strategies in marine phytoplankton. Plant Physiology 66: 632–635.

    Google Scholar 

  • Falkowski, P. G. & J. A. Raven, 2007. Aquatic Photosynthesis. Blackwell Scientific Publishers, Oxford.

    Google Scholar 

  • Falkowski, P. G., Z. Dubinsky & K. Wyman, 1985. Growth-irradiance relationships in phytoplankton. Limnology and Oceanography 30: 311–321.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., Z. Dubinsky, L. Muscatine & L. McCloskey, 1993. Population control in symbiotoc corals. Ammonium ions and organic materials maintain the density of zooxanthellae. BioSciences 43: 606–611.

    Google Scholar 

  • Fan, L., A. Vonshak, A. Zarka & S. Boussiba, 1988. Does astaxanthin protect Haematococcus against light damage? Zeitschrift für Naturforschung 53: 93–100.

    Google Scholar 

  • Finkel, Z., 2001. Light absorption and the size-scaling of light-limited growth and photosynthesis in marine diatoms. Limnology and Oceanography 46: 86–94.

    Article  CAS  Google Scholar 

  • Finkel, Z., A. J. Irwin & O. Schofield, 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankon. Marine Ecology Progress Series 273: 269–279.

    Google Scholar 

  • Fisher, T., R. Shurtz-Swirski, S. Gepstein & Z. Dubinsky, 1989. Changes in the levels of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in Tetraedron minimum (Chlorophyta) during light and shade adaptation. Plant Cell Physiology 30: 221–228.

    CAS  Google Scholar 

  • Fisher, T., J. Minaard & Z. Dubinsky, 1996. Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyta): a kinetic study. Journal of Plankton Research 18: 1797–1818.

    Google Scholar 

  • Fisher, T., T. Berner, D. Iluz & Z. Dubinsky, 1998. The kinetics of the photoacclimation response of Nannochloropsis sp. (Eustigmatophyceae): a study of changes in ultrastructure and PSU density. Journal of Phycology 34: 818–824.

    Google Scholar 

  • Fogg, G. E., 1958. Actual and potential yields in photosynthesis. Advanced Science 14: 395–400.

    Google Scholar 

  • Forward, R. B., 1970. Change in the photoresponse action spectrum of the dinoflagellate Gyrodinium dorsum Kofoid by red and far-red light. Planta 92: 245–258.

    Google Scholar 

  • Franklin, L. A., G. Levavasseur, C. B. Osmond, W. J. Henley & J. Ramus, 1992. Two components of onset and recovery during photoinhibition of Ulva rotundata. Planta 186: 399–408.

    CAS  Google Scholar 

  • Fridovich, I., 1998. Oxygen toxicity: a radical explanation. Journal of Experimental Biology 201: 1203–1209.

    CAS  PubMed  Google Scholar 

  • Fujiki, T. & S. Taguchi, 2002. Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. Journal of Plankton Research 24: 859–874.

    CAS  Google Scholar 

  • Fujiki, T., T. Toda, T. Kikuchi & S. Taguchi, 2003. Photoprotective response of xanthophyll pigments during phytoplankton blooms in Sagami Bay, Japan. Journal of Plankton Research 25: 317–322.

    CAS  Google Scholar 

  • Gervais, F., 1997. Light-dependent growth, dark survival, and glucose uptake by cryptophytes isolated from a freshwater chemocline. Journal of Phycology 33: 18–25.

    CAS  Google Scholar 

  • Goericke, R. & N. A. Welschmeyer, 1992. Pigment turnover in the marine diatom Thalassiosira weissflogii. II. The 14CO2-labeling kinetics of carotenoids. Journal of Phycology 25: 507–517.

    Google Scholar 

  • Gran, H. H., 1912. Pelagic plant life. In Murray, J. & J. Hjort (eds), The Depths of the Oceans. MacMillan and Co., London: 307–387.

    Google Scholar 

  • Grobbelaar, J. U., L. Nedbal, V. Tichý & I. Šetlík, 1995. Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors. Journal of Applied Phycology 7: 175–184.

    CAS  Google Scholar 

  • Grzymski, J., O. Schofield, P. G. Falkowski & J. M. Bernhard, 2002. Nonionella stella, a modern analog to the endosymbiotic origin of diatoms: plastid description and function. Limnology and Oceanography 47: 1569–1580.

    Article  CAS  Google Scholar 

  • Halliwell, B., 1999. Antioxidant defense mechanisms: from the beginning to the end (of the beginning). Free Radical Research 31: 261–272.

    CAS  PubMed  Google Scholar 

  • Han, D., E. Williams & E. Cadenas, 2001. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochemical Journal 353: 411–416.

    CAS  PubMed  Google Scholar 

  • Harris, G. N., D. J. Scanlan & R. J. Geider, 2009. Responses of Emiliania huxleyi (Prymnesiophyceae) to step changes in photon flux density. European Journal of Phycology 44: 31–48.

    CAS  Google Scholar 

  • Heil, C. A., 1986. Vertical migration of Ptycodiscus brevis (Davis) Steidinger. MSc thesis, University of South Florida, Tampa, FL.

  • Henley, W. J., 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology 29: 729–739.

    Google Scholar 

  • Henley, W. J., G. Levavasseur, L. A. Franklin, S. T. Lindley, J. Ramus & C. B. Osmond, 1991. Diurnal responses of photosynthesis and fluorescence in Ulva rotundata acclimated to sun and shade in outdoor culture. Marine Ecology Progress Series 75: 19–28.

    Google Scholar 

  • Hieber, A. D., O. Kawabata & H. Y. Yamamoto, 2004. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in vitro de-epoxidation in monogalactosyldiacylglycerol micelles. Plant Cell Physiology 45: 92–102.

    CAS  PubMed  Google Scholar 

  • Kamykowski, D., 1981. Laboratory experiments on the diurnal vertical migration of marine dinoflagellates through temperature gradients. Marine Biology 62: 57–64.

    Google Scholar 

  • Kirilovsky, D., 2007. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynthesis Research 93: 7–16.

    CAS  PubMed  Google Scholar 

  • Kirk, J. T., 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light in natural waters. I. General treatment of suspensions of pigmented cells. New Phytology 75: 11–20.

    Google Scholar 

  • Kirk, J. J. O., 1986. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, New York.

    Google Scholar 

  • Kok, B., 1956. On the inhibition of photosynthesis by intense light. Biochimica Biophysica Acta 21: 234–244.

    CAS  Google Scholar 

  • Kramer, D. M., T. J. Avenson & G. E. Edwards, 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends in Plant Science 9: 349–357.

    CAS  PubMed  Google Scholar 

  • Kroon, B. M. A., 1994. Variability of photosystem II quantum yield and related processes in Chlorella pyrenoidosa (Chlorophyta) acclimated to an oscillating light regime simulating a mixed photic zone. Journal of Phycology 30: 841–852.

    CAS  Google Scholar 

  • Kruse, O., 2001. Light-induced short-term adaptation mechanisms under redox control in the PS II-LHCII supercomplex: LHC II state transitions and PS II repair cycle. Naturwissenschaf. doi:10.1007/s001140100232.

  • Lavaud, J., 2007. Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Functional Plant Science and Biotechnology 1: 267–287.

    Google Scholar 

  • Lavaud, J., B. Rousseau & A.-L. Etienne, 2004. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). Journal of Phycology 40: 130–137.

    Google Scholar 

  • Lee, J. J. & O. R. Anderson, 1991. Symbiosis in foraminifera. In Anderson, O. R. (ed.), Biology of the Foraminifera. Academic Press, New York.

    Google Scholar 

  • Lee, J. J. & D. Bock, 1976. The importance of feeding in two species of soritid foraminifera with algal symbionts. Bulletin of Marine Science 26: 530–537.

    Google Scholar 

  • Lee, J. J. & W. A. Muller, 1969. Apparent indispensability of bacteria in foraminifera nutrition. Journal of Protozoology 16: 471–478.

    Google Scholar 

  • Lee, J. J. & W. Zucker, 1969. Algal flagellate symbiosis in the foraminifer Archais. Journal of Protozoology 16: 71–81.

    Google Scholar 

  • Lee, J. J., L. J. Crockett, J. Hagen & R. J. Stone, 1974. The taxinomic identity and physiological ecology of Chlamydomonas hedleyi sp. Nov. Algal flagellate symbiont from the forainifer Archaias angulatus. British Phycology Journal 9: 407–422.

    Google Scholar 

  • Lee, J. J., W. W. Faber, R. Nathanson, R. Rottger & M. Nishihira, 1992. Endosymbiotic diatoms from larger foraminifera collected in the Pacific habitats. Symbiosis 14: 265–281.

    Google Scholar 

  • Leutengger, S., 1984. Symbiosis in benthic foraminifera: specificity and host adaptations. Journal of Foraminifera Research 14: 16–35.

    Google Scholar 

  • Levy, O., Y. Achituv, Y. Z. Yacobi, N. Stambler & Z. Dubinsky, 2006. The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD & CAT) in the coral Favia favus. Journal of Experimental Marine Biological Ecology 328: 35–46.

    CAS  Google Scholar 

  • Lewitus, A., D. A. Caron & K. Miller, 1991. Effects of light and glycerol on the organization of the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae). Journal of Phycology 27: 578–587.

    Google Scholar 

  • Ley, A. C. & D. Mauzerall, 1982. Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochimica Biophysica Acta 680: 95–106.

    CAS  Google Scholar 

  • Li, X.-P., A. Phippard, J. Pasari & K. K. Niyogi, 2002. Structure–function analysis of photosystem II subunit S (PsbS) in vivo. Functional Plant Biology 29: 1131–1139.

    Google Scholar 

  • Livanský, K. & J. Doucha, 2005. Utilization of carbon dioxide by Chlorella kessleri in outdoor open thin-layer cutlure units. Archives Hydrobiologia 157: 201–212.

    Google Scholar 

  • MacIntyre, H. L., T. M. Kana, T. Anning & R. J. Geider, 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology 38: 17–38.

    Google Scholar 

  • Malkin, S. & O. Canaani, 1994. The use of photoacoustic method in the study of photosynthesis. Annual Reviews Plant Physiology Plant Molecular Biology 45: 493–526.

    CAS  Google Scholar 

  • Mallick, N. & F. H. Mohn, 2000. Reactive oxygen species: response of algal cells. Journal of Plant Physiology 157: 672–679.

    Google Scholar 

  • Melis, A. & P. H. Homann, 1975. Kinetic analysis of fluorescence induction in 3-(3,4-dichlorophenyl)-l,l-dimethylureas poisoned chloroplasts. Photochemistry Photobiology 21: 431–437.

    CAS  Google Scholar 

  • Mobley, C. D., 1994. Light and Water Radiative Transfer in Natural Waters. Academic Press, San Diego.

    Google Scholar 

  • Moline, M. A., 1998. Photoadaptive response during the development of a coastal Antarctic diatom bloom and relationship to water column stability. Limnology and Oceanography 43: 146–153.

    Article  CAS  Google Scholar 

  • Moline, M. A., O. Schofield & N. B. Boucher, 1998. Photosynthetic parameters and empirical modeling of primary production in the Southern ocean. Antarctic Science 10: 45–54.

    Google Scholar 

  • Morel, A., 1974. Optical properties of pure water and pure seawater. In Jerlov, N. G. & E. S. Nielsen (eds), Optical Aspects of Oceanography. Academic Press, London: 1–24.

    Google Scholar 

  • Morel, A. & A. Bricaud, 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Research 28: 1375–1393.

    Google Scholar 

  • Muggli, D. L. & P. J. Harrison, 1996. Effects of nitrogen source on the physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions. Marine Ecology Progress Series 130: 255–267.

    CAS  Google Scholar 

  • Muller-Merz, E. & J. J. Lee, 1976. Symbiosis in the larger foraminiferan Sorites marginalis (with notes on Archaias sp.). Journal of Protozoology 23: 390–396.

    Google Scholar 

  • Muscatine, L. & J. W. Porter, 1977. Reef Corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27: 454–460.

    Google Scholar 

  • Myers, J., 1994. The 1932 experiments. Photosynthesis Research 40: 303–310.

    Google Scholar 

  • Neale, P. J., 1987. Algal photoinhibition and photosynthesis in the aquatic environment. In Kyle, D. J., C. B. Osmond & C. J. Arntzen (eds), Photoinhibition. Elsevier, New York: 39–65.

    Google Scholar 

  • Nisbet, E. G., J. R. Cana & C. L. Van Dover, 1995. Origins of photosynthesis. Nature 373: 479–480.

    CAS  Google Scholar 

  • Niyogi, K. K., X. Li, V. Rosenberg & H. Jung, 2005. Is PsbS the site of nonphotochemical quenching in photosynthesis? Journal of Experimental Botany 56: 375–382.

    CAS  PubMed  Google Scholar 

  • Noguchi, T., H. Hayashi, K. Shimida, S. Takaichi & M. Tasumi, 1992. In vivo states and function of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynthesis Research 31: 21–30.

    CAS  Google Scholar 

  • Odum, H. T. & E. Odum, 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monographs 25: 291–320.

    Google Scholar 

  • Ogren, E. & G. Oquist, 1984. Photoinhibition of photosynthesis in Lemna gibba as induced by the interaction between light and temperature. III. Chlorophyll fluorescence at 77 K. Physiology Plant 62: 193–200.

    Google Scholar 

  • Olaizola, M., J. LaRoche, Z. Kolber & P. G. Falkowski, 1994. Non-photochemical fluorescence quenching and the diadinoxathin cycle in a marine diatom. Photosynthesis Research 41: 357–370.

    CAS  Google Scholar 

  • Oliver, M. W., O. Schofield, T. Bergmann, S. M. Glenn, M. A. Moline & C. Orrico, 2004. In situ optically derived phytoplankton absorption properties in coastal waters and its utility for estimating primary productivity rates. Journal of Geophysical Research 109: C07S11.

    Google Scholar 

  • Őquist, G. & N. P. A. Huner, 2003. Photosynthesis of overwintering evergreen plants. Annual Reviews Plant Biology 54: 329–355.

    Google Scholar 

  • Osmond, C. B., J. Ramus, G. Levavasseur, L. A. Franklin & W. J. Henley, 1993. Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid. Planta 106: 97–106.

    Google Scholar 

  • Overmann, J. & F. Garcia-Pichel, 2005. The phototrophic way of life. In Dworkin, M. (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Springer, New York: 32–85.

    Google Scholar 

  • Overmann, J., H. Cypionka & N. Pfennig, 1992. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnology and Oceanography 37: 150–155.

    Article  CAS  Google Scholar 

  • Phillips, J. N. Jr. & J. Myers, 1954. Growth rate of Chlorella in flashing light. Plant Physiology 29: 152–161.

    CAS  PubMed  Google Scholar 

  • Pinchasov, Y., R. Porat, B. Zur & Z. Dubinsky, 2007. Photoacoustics: a novel tool for the determination of photosynthetic energy storage efficiency in phytoplankton. Hydrobiologia 579: 251–256.

    Google Scholar 

  • Post, A. F., Z. Dubinsky, K. Wyman & P. G. Falkowski, 1984. Kinetics of light intensity adaptation in a marine plankton diatom. Marine Biology 83: 231–238.

    Google Scholar 

  • Post, A. F., Z. Dubinsky, K. D. Wyman & P. G. Falkowski, 1985. Physiological responses to light intensity transitions in a marine plankton diatom. Marine Ecology Progress Series 25: 141–149.

    CAS  Google Scholar 

  • Powles, S. B., 1984. Photoinhibition of photosynthesis induced by visible light. Annual Review Plant Physiology 35: 15–44.

    CAS  Google Scholar 

  • Prasil, O., N. Adir & I. Ohad, 1992. Dynamics of photosystem II: mechanism of photoinhibtion and recovery processes. In Barber, J. R. (ed.), The Photosystems: Structure. Function and Molecular Biology. Elsevier, New York: 295–348.

    Google Scholar 

  • Prézelin, B. B. & R. S. Alberte, 1978. Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates. Proceedings of the National Academy of Sciences 75: 1801–1804.

    Google Scholar 

  • Prézelin, B. B. & B. A. Boczar, 1986. Molecular bases of cell absorption and fluorescence in phytoplankton: potential applications to studies in optical oceanography. Progress Phycological Research 4: 350–464.

    Google Scholar 

  • Prézelin, B. B. & H. A. Matlick, 1980. Time course of photoadaptation in the photosynthesis irradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity. Marine Biology 58: 85–96.

    Google Scholar 

  • Prézelin, B. B. & H. A. Matlick, 1983. Nutrient-dependent low light adaptation in the dinoflagellate, Gonyaulax polyedra. Marine Biology 58: 85–96.

    Google Scholar 

  • Prézelin, B. B., M. M. Tilzer, O. Schofield & C. Haese, 1991. The control of the production process by the physical structure of the aquatic environment with special reference to its optical properties. Aquatic Science 53: 136–186.

    Google Scholar 

  • Raps, S., K. Wyman, H. W. Siegelman & P. G. Falkowski, 1983. Adaptation of the cyanobacterium Microcystis aerugenosa to light intensity. Plant Physiology 72: 829–832.

    CAS  PubMed  Google Scholar 

  • Rascher, U. & L. Nedbal, 2006. Dynamics of photosynthesis in fluctuating light. Current Opinions Plant Biology 9: 671–678.

    CAS  Google Scholar 

  • Raven, J. A., 1984. The cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytologist 98: 593–625.

    CAS  Google Scholar 

  • Raven, J. A. & C. S. Cockell, 2006. Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe). Astrobiolgy 6: 668–675.

    CAS  Google Scholar 

  • Raven, J. A., J. E. Kubler & J. Beardall, 2000. Put out the light, and put out the light. Journal of the Marine Biological Association of the United Kingdom 80: 1–27.

    CAS  Google Scholar 

  • Richardson, K., J. Beardall & J. A. Raven, 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytologist 93: 157–171.

    Google Scholar 

  • Richmond, A., 1993. Handbook of Microalgal Culture. Blackwell, New York.

    Google Scholar 

  • Richmond, A., S. Boussiba, A. Vonshak & R. Kopel, 1994. A new tubular reactor for mass production of microalgae outdoors. Journal Applied Phycology 5: 327–332.

    Google Scholar 

  • Rivkin, R. B., 1990. Photoadaptation in marine phytoplankton: variations in ribulose 1,5-bisphosphate activity. Marine Ecology Progress Series 62: 61–72.

    CAS  Google Scholar 

  • Rowan, K. S., 1989. Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge.

    Google Scholar 

  • Saito, M. A., D. M. Sigman & F. M. Morel, 2003. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterzoic boundary? Inorganic Chimica Acta 356: 308–318.

    CAS  Google Scholar 

  • Schanz, F., P. Senn & Z. Dubinsky, 1997. Light absorption by phytoplankton and the vertical light attenuation: ecological and physiological significance. Annual Review Oceanographic Marine Biology 35: 71–95.

    Google Scholar 

  • Schofield, O., B. B. Prézelin, R. R. Bidigare & R. C. Smith, 1993. In situ photosynthetic quantum yield. Correspondence to hydrographic and optical variability within the Southern California Bight. Marine Ecology Progress Series 93: 25–37.

    Google Scholar 

  • Schofield, O., B. B. Prézelin & G. Johnsen, 1996. Wavelength dependency in the photosynthetic parameters for two dinoflagellate species Heterocapsa pygmaea and Prorocentrum minimum: implications for the bio-optical modeling of photosynthetic rates. Journal of Phycology 32: 574–583.

    CAS  Google Scholar 

  • Schofield, O., T. J. Evens & D. F. Millie, 1998. Photosystem II quantum yields and xanthophyll-cycle pigments of the macroalga, Sargassum natans (Phaeophyta): dynamic responses under natural sunlight. Journal of Phycology 34: 104–112.

    CAS  Google Scholar 

  • Schofield, O., J. Kerfoot, K. Mahoney, M. A. Moline, M. Oliver, M. S. Lohrenz & G. Kirkpatrick, 2006. Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties. Journal of Geophysical Research 111: C06009.

    Google Scholar 

  • Schofield, O., J. Kohut, D. Aragon, L. Creed, J. Graver, C. Haldeman, J. Kerfoot, H. Roarty, C. Jones, D. Webb & S. M. Glenn, 2007. Slocum Gliders: robust and ready. Journal of Field Robotics 24: 473–485.

    Google Scholar 

  • Schubert, H., B. M. Kroon & H. C. Matthijs, 1994. In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green alga Chlorella pyrenoidosa. Journal of Biological Chemistry 269: 7267–7272.

    CAS  PubMed  Google Scholar 

  • Schumann, A., R. Goss, J. Torsten & C. Wilhelm, 2007. Investigation of the quenching efficiency of diatoxanthin in cells of Phaeodactylum tricornutum (Bacillariophyceae) with different pool sizes of xanthophyll cycle pigments. Phycologia 46: 113–117.

    Google Scholar 

  • Shiba, T., U. Simidu & N. Taga, 1979. Distribution of aeorobic bacteria which contain bacteriochlorophyll a. Applied Environmental Microbiology 38: 43–48.

    CAS  Google Scholar 

  • Shiba, T., Y. Shioi, K. Takamiya, D. C. Sutton & C. R. Wilkinson, 1991. Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coast of Australia. Applied Environmental Microbiology 57: 295–300.

    CAS  Google Scholar 

  • Shiller, A. M., 1997. Manganese in surface waters of the Atlantic Ocean. Geophysical Research Letters 24: 1495–1498.

    CAS  Google Scholar 

  • Simmer, J., V. Tichý & J. Doucha, 1994. What kind of lamp for the cultivation of algae? Journal of Applied Phycology 6: 309–313.

    Google Scholar 

  • Sosik, H., 1996. Bio-optical modeling of primary production: consequences of variability in quantum yield and specific absorption. Marine Ecology Progress Series 143: 225–238.

    Google Scholar 

  • Spolaore, P., C. Joannis-Cassan, E. Duran & A. Isambert, 2006. Commercial applications of microalgae. Journal of Bioscience Bioengineering 101: 87–96.

    CAS  Google Scholar 

  • Stambler, N. & Z. Dubinsky, 2009. Phototrophs in the twilight zone. In Seckbach, J. (ed.), Algae in Extreme Environment Cellular Origins. Life in Extreme Habitats and Astrobiology. Springer Verlag, New York.: 81–127.

    Google Scholar 

  • Steidinger, K. A. 1975. Basic factors influencing red tides. In LoCicero, V. R. (ed.), Proceedings of the First International Conference on Toxic Dinoflagellate Blooms: 153–162.

  • Sukenik, A., J. Bennett & P. G. Falkowski, 1987. Light-saturated photosynthesis limitation by electron transport or carbon fixation? Biochimica Biophysica Acta 891: 205–215.

    CAS  Google Scholar 

  • Taguchi, S., 1976. Short-term variability of photosynthesis in natural marine phytoplankton populations. Marine Biology 37: 197–207.

    CAS  Google Scholar 

  • Tuchman, N. C., 1996. The role of heterotrophy in algae. In Stevenson, R. J., M. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York.

    Google Scholar 

  • Van Dover, C. L., 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton.

    Google Scholar 

  • Van Dover, C. L., G. T. Reynolds, A. D. Chave & J. A. Tyson, 1996. Light at deep sea hydrothermal vents. Geophysical Research Letters 23: 2049–2052.

    Google Scholar 

  • Wagner, D., D. Przybyla, R. Camp, C. Kim, F. Landgraf, K. P. Lee, M. Wursch, C. Laloi, M. Nater, E. Hideg & K. Apel, 2004. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306: 1183–1185.

    CAS  PubMed  Google Scholar 

  • Walsby, A. E., P. K. Hayes, R. Boje & L. J. Stal, 1997. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136: 407–417.

    Google Scholar 

  • White, S. N., A. D. Chave, G. T. Reynolds, E. J. Gaidos, J. A. Tyson & C. L. Van Dover, 2000. Variations in ambient light emission from black smokers and flange pools on the Juan de Fuca Ridge. Geophysical Research Letters 27: 1151–1154.

    Google Scholar 

  • Wolfe, F., D. Grzebyk, O. Schofield & P. G. Falkowski, 2005. The role and evolution of superoxide dismutases in algae. Journal of Phycology. doi:10.1111/j.-1529-8817.2005.00086.

  • Wolfe-Simon, F., A. Trey, V. Starovoytov, J. R. Reinfelder, O. Schofield, O. & P. G. Falkowski, 2006. The localization and role of MnSOD in diatoms. Plant Physiology. doi:101104/pp.106.088963.

  • Young, A., J. D. Phillip, A. V. Rubanb, P. Horton & H. A. Frank, 1997. The xanthophyll cycle and carotenoid-mediated dissipation of excess excitation energy in photosynthesis. Pure Applied Chemistry 69: 2125–2130.

    CAS  Google Scholar 

  • Yurkov, V. & T. Beatty, 1998. Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Applied Environmental Microbiology 64: 337–341.

    CAS  Google Scholar 

  • Yurkov, V., E. Stackebrandt, A. Holmes, J. A. Fuerst, P. Hugenholtz, J. Golecki, N. Gad’on, V. M. Gorlenko, E. I. Kompanttseva & G. Drews, 1994. Phylogenetic positions of novel areobic, bacteriochlorophyll a containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. International Journal of Systematic Bacteriology 44: 427–434.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the BiNational Science Foundation grant (2002396), the NOAA GOES risk reduction program (NA-108H-E), the National Science Foundation Office of Polar Programs SEGR program (NSF-ANT 0700990), and the Department of Defense Major University Research Initiative Program (N000140610739). We thank David Mazuerall (Rockefeller University) for his hospitality and Maximum Grobunov (Rutgers University) for his partnership. We also appreciate constructive comments provided by two anonymous reviewers. This study was presented as an invited article at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—The 15th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)—held in Ramot, Israel, November 23–30, 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvy Dubinsky.

Additional information

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Papers from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinsky, Z., Schofield, O. From the light to the darkness: thriving at the light extremes in the oceans. Hydrobiologia 639, 153–171 (2010). https://doi.org/10.1007/s10750-009-0026-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0026-0

Keywords

Navigation