Skip to main content
Log in

Eco-fingerprinting of the dinoflagellate Borghiella dodgei: experimental evidence of a specific environmental niche

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Lake Tovel, an oligotrophic and weakly stratified lake, the dinoflagellate Borghiella dodgei Moestrup, Hansen et Daugbjerg, showed a peculiar spatial–temporal pattern with highest abundances in the bottom of the shallow side bay (4 m) along with remarkable abundance variations from year to year. We investigated B. dodgei’s growth in laboratory cultures and related results to their implication for bloom formation. B. dodgei was cultivated under different temperature, nutrient and light conditions. Growth rates, cell biovolume, cyst formation and pigment and mycosporine-like amino acids (MAAs) concentrations were determined. Experiments showed that this alga (i) had higher growth rates at low temperatures (<7°C) and high irradiance levels (~250 μmol m−2 s−1), (ii) produced higher yields with organic supplements such as peptone, (iii) did not grow in the dark even with organic supplements, (iv) survived for long periods without a light source, (v) synthesised MAAs, (vi) showed an increase in cell volume with nutrient shortage and increasing temperatures (>7°C) and (vii) had high encystment rates with temperatures >7°C. These laboratory fingerprints allowed us to construct a theoretical model defining the species’ niche. Borghiella needed a mixture of low temperatures, high irradiance levels and sufficient quantities of dissolved organic nitrogen to form blooms. Such a strict combination was probably a transient situation and occurred in oligotrophic Lake Tovel only in early summers followed by heavy spring rains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alster, A., Z. Dubinsky & T. Zohary, 2006. Encystment of Peridinium gatunense: occurrence, favourable environmental conditions and its role in the dinoflagellate life cycle in a subtropical lake. Freshwater Biology 51: 1219–1228.

    Article  Google Scholar 

  • Andersen, R. A., S. L. Morton & J. P. Sexton, 1997. Provasoli-Guillard National Center for culture of marine phytoplankton, 1997 list of strains. Journal of Phycology 33(Suppl): 1–7.

    Article  Google Scholar 

  • Arrighetti, A. & M. Siligardi, 1978. Hydrobiological analyses from Lake Tovel, Trentino. Esperienze & Richerche 5: 5–69 (in Italian).

    Google Scholar 

  • Boëchat, I. G., G. Weithoff, A. Krüger, B. Gücker & R. Adrian, 2007. A biochemical explanation for the success of mixotrophy in the flagellate Ochromonas sp. Limnology and Oceanography 52: 1624–1632.

    Google Scholar 

  • Burford, M., 2005. Relative uptake of urea and ammonium by dinoflagellates or cyanobacterian shrimp mesocosms. Hydrobiologia 549: 297–303.

    Article  CAS  Google Scholar 

  • Butterwick, C., S. I. Heaney & J. F. Talling, 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50: 291–300.

    Google Scholar 

  • Calliari, D., M. Tolotti & F. Corradini, 2006. Littoral distribution of dinoflagellates in Lake Tovel (Trentino, Italy). Studi Trentini Scienze Naturali, Acta Biologica 81: 341–350.

    Google Scholar 

  • Carli, L., P. Ferrari, O. Ferretti & G. B. Toller, 1981. Survey of the orographic horizon for the calculation of radiation and insolation in ten meteorological observatories. Esperienze & Ricerche 10: 107–154 (in Italian).

    Google Scholar 

  • Chapman, A. D. & L. A. Pfiester, 1995. The effects of temperature, irradiance, and nitrogen on the encystment and growth of the fresh-water dinoflagellates Peridinium cinctum and P. willei in culture (Dinophyceae). Journal of Phycology 31: 355–359.

    Article  Google Scholar 

  • Coats, D. W., 2002. Dinoflagellate life-cycle complexities. Journal of Phycology 38: 417–419.

    Article  Google Scholar 

  • Corradini, F. & A. Boscaini, 2006. Physical and chemical characteristics of Lake Tovel (central Alps). Studi Trentini Scienze Naturali, Acta Biologica 81: 307–326 (in Italian).

    Google Scholar 

  • Dixon, G. K. & P. J. Syrett, 1988. The growth of dinoflagellates in laboratory cultures. New Phytologist 109: 297–302.

    Article  Google Scholar 

  • Dodge, J. D., P. Mariani, A. Paganelli & R. Trevisan, 1987. Fine structure of the red-bloom dinoflagellate Glenodinium sanguineum, from Lake Tovel (N. Italy). Archiv für Hydrobiologie 78(Suppl): 125–138 (Algological Studies 47).

    Google Scholar 

  • Droop, M. R., 1975. The nutrient status of algal cells in batch culture. Journal of the Marine Biological Association UK 55: 541–555.

    Article  CAS  Google Scholar 

  • Figueroa, R. I., I. Bravo & E. Garcés, 2006. Multiple routes of sexuality in Alexandrium taylori (Dinophyceae) in culture. Journal of Phycology 42: 1028–1039.

    Article  Google Scholar 

  • Filippi, M., G. Flaim, L. Ress, C. Salamon & M. Scotoni, 2006. A thermal gradient apparatus for algal growth experiments. Studi Trentini Scienze Naturali, Acta Biologica 81: 467–468.

    Google Scholar 

  • Flaim, G., G. Hansen, Ø. Moestrup, F. Corradini & B. Borghi, 2004. Re-interpretation of the dinoflagellate ‘Glenodinium sanguineum’ in the reddening of Lake Tovel, Italian Alps. Phycologia 43: 737–743.

    Article  Google Scholar 

  • Frassanito, R., M. Cantonati, M. Tardio, I. Mancini & G. Guella, 2005. On-line identification of secondary metabolites in freshwater microalgae and cyanobacteria by combined liquid chromatography-photodiode array detection-mass spectrometric techniques. Journal of Chromatography A 1082: 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Freshfield, D. W., 1875. Italian Alps: Sketches in the Mountains of Ticino, Lombardy, the Trentino and Venetia. Longmans Green, London: 385.

    Google Scholar 

  • Furusato, E. & T. Asaeda, 2009. A dynamic model of darkness tolerance for phytoplankton: model description. Hydrobiologia 619: 67–88.

    Article  Google Scholar 

  • Grigorszky, I., K. T. Kiss, V. Béres, I. Bácsi, M. M.- Hamvas, C. Máthé, G. Vasas, J. Padisák, G. Borics, M. Gligora & G. Borbély, 2006. The effects of temperature, nitrogen, and phosphorus on the encystment of Peridinium cinctum, Stein (Dinophyta). Hydrobiologia 563: 527–535.

    Article  CAS  Google Scholar 

  • Guillard, R. R., 1973. Division rates. In Stein, J. (ed.), Handbook of Phycological Methods. Cambridge University Press, Cambridge: 289–312.

    Google Scholar 

  • Hansen, G. & G. Flaim, 2007. Dinoflagellates of the Trentino Province, Italy. Journal of Limnology 66: 107–141.

    Google Scholar 

  • Hansen, G., N. Daugbjerg & P. Henriksen, 2007. Baldinia anauniensis gen. et sp. nov.: a ‘new’ dinoflagellate from Lake Tovel, N. Italy. Phycologia 46: 86–108.

    Article  Google Scholar 

  • Jensen, M. O. & Ø. Moestrup, 1997. Autecology of the toxic dinoflagellate Alexandrium ostenfeldii: life history and growth at different temperatures and salinities. European Journal of Phycology 32: 9–18.

    Article  Google Scholar 

  • John, E. H. & K. J. Flynn, 1999. Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N:P supply ratios on internal toxin and nutrient levels. European Journal of Phycology 35: 11–23.

    Google Scholar 

  • Kilham, P., S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography 31: 1169–1181.

    Google Scholar 

  • Kremp, A., M. Elbrächter, M. Schweikert, J. Wolny & M. Gottschling, 2005. Woloszynskia halophila (Biecheler) comb.nov.: A bloom-forming cold-water dinoflagellate co-occurring with Scrippsiella hangoei (Dinophyceae) in the Baltic Sea. Journal of Phycology 41: 629–642.

    Article  Google Scholar 

  • Latasa, M. & E. Berdalet, 1994. Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. Journal of Plankton Research 16: 83–94.

    Article  Google Scholar 

  • Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.

    Article  Google Scholar 

  • Lindström, K., 1991. Nutrient requirements of the dinoflagellate Peridinium gatunense. Journal of Phycology 27: 207–219.

    Article  Google Scholar 

  • Litchman, E., P. J. Neale & A. T. Banaszak, 2002. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection and repair. Limnology and Oceanography 47: 86–94.

    Article  CAS  Google Scholar 

  • Litaker, R. W., M. W. Vandersea, S. R. Kibler, V. J. Madden, E. J. Noga & P. A. Tester, 2002. Life cycle of the heterotrophic dinoflagellate Pfiesteria piscicida. Journal of Phycology 38: 442–463.

    Article  Google Scholar 

  • Louda, J. W., L. Liu & E. A. Baker, 2002. Senescence- and death-related alteration of chlorophylls and carotenoids in marine phytoplankton. Organic Geochemistry 33: 1635–1653.

    Article  CAS  Google Scholar 

  • Miller, W.E., J.C. Greene & T. Shiroyama, 1978. The Selenastrum capricornutum Printz algal assay bottle test. EPA -600/9-78-018.

  • Moestrup, Ø., G. Hansen, N. Daugbjerg, G. Flaim & M. D’Andrea, 2006. Studies on woloszynskioid dinoflagellates II: on Tovellia sanguinea sp. nov., the dinoflagellate responsible for reddening of Lake Tovel, Italy. European Journal of Phycology 41: 47–65.

    Article  Google Scholar 

  • Moestrup, Ø., G. Hansen & N. Daugbjerg, 2008. Studies on woloszynskioid dinoflagellates III: On Borghiella gen. nov., and B. dodgei sp. nov., a cold-water species from Lago di Tovel, N. Italy, and on B. tenuissima comb. nov. (syn. Woloszynskia tenuissima). Phycologia 47: 54–78.

    Article  CAS  Google Scholar 

  • Neale, P. J., A. T. Banaszak & C. R. Jarriel, 1998. Ultraviolet sunscreens in Gymnodinium sanguineaum (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. Journal of Phycology 34: 928–938.

    Article  CAS  Google Scholar 

  • Obertegger, U., G. Flaim, M. G. Braioni, R. Sommaruga, F. Corradini & A. Borsato, 2007. Water residence time as a driving force of zooplankton structure and succession. Aquatic Science 69: 575–583.

    Article  Google Scholar 

  • Obertegger, U., G. Flaim & R. Sommaruga, 2008. Multifactorial nature of rotifer water layer preferences in an oligotrophic lake. Journal of Plankton Research 30: 63–643.

    Article  CAS  Google Scholar 

  • Olli, K. & D. M. Anderson, 2002. High encystment success of the dinoflagellate Scrippsiella cf. lachrymose in culture experiments. Journal of Phycology 38: 145–156.

    Article  Google Scholar 

  • Pipp, E. & E. Rott, 1995. A phytoplankton compartment model for a small meromictic lake with special reference to species-specific niches and long-term changes. Ecological Modelling 78: 129–148.

    Article  Google Scholar 

  • Qiang, Hu, 2004. Environmental effects on cell composition. In Richmond, A. (ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd, London: 83–94.

    Google Scholar 

  • Raven, J. A. & R. J. Geider, 1988. Temperature and algal growth. New Phytologist 110: 441–461.

    Article  CAS  Google Scholar 

  • Rengefors, K., I. Karlsson & L. A. Hansson, 1998. Algal cyst dormancy: a temporal escape from herbivory. Proceedings Royal Society London B 265: 1353–1358.

    Article  Google Scholar 

  • Richardson, T. L., C. E. Gibson & S. I. Heaney, 2000. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshwater Biology 44: 431–440.

    Article  Google Scholar 

  • Rose, J. M. & D. A. Caron, 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography 52: 886–895.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibration. Schweizerische Zeitschrift für Hydrologie 43: 34–63.

    Article  Google Scholar 

  • Schmidtke, A., E. M. Bell & G. Weithoff, 2006. Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. Journal of Plankton Research 28: 991–1001.

    Article  CAS  Google Scholar 

  • Seaburg, K. G., B. C. Parker, R. A. Wharton & G. M. Simmons, 1981. Temperature-growth responses of algal isolates from Antarctic oases. Journal of Phycology 17: 353–360.

    Article  Google Scholar 

  • Sgrosso, S., F. Esposito & M. Montresor, 2001. Temperature and daylength regulate encystment in calcareous cyst-forming dinoflagellates. Marine Ecology Progress Series 211: 77–87.

    Article  Google Scholar 

  • Sigee, D. C., F. Bahrami, B. Estrada, R. E. Webster & A. P. Dean, 2007. The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotrom-based FTIR analysis. Phycologia 46: 583–592.

    Article  Google Scholar 

  • Skovgaard, A., 2000. A phagotrophically derivable growth factor in the plastidic dinoflagellate Gyrodinium resplendens (Dinophyceae). Journal of Phycology 36: 1069–1078.

    Article  Google Scholar 

  • Smayda, T., 2002. Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. Journal of Oceanography 58: 281–294.

    Article  Google Scholar 

  • Sommaruga, R., 2001. The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62: 35–42.

    Article  CAS  Google Scholar 

  • Staehr, P. A. & M. J. Birkeland, 2006. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologia 45: 648–656.

    Article  Google Scholar 

  • Tang, E., 1996. Why do dinoflagellates have lower growth rates? Journal of Phycology 32: 80–84.

    Article  Google Scholar 

  • Thingstad, T. F., L. Ovreas, J. K. Egge, T. Lovdal & M. Heldal, 2005. Use of non-limiting substrates to increase size, a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecology Letters 8: 65–682.

    Article  Google Scholar 

  • Tolotti, M., D. Calliari & F. Corradini, 2006. Interannual variability of phytoplankton in Lake Tovel (central Alps). Studi Trentini Scienze Naturali, Acta Biologica 81: 327–340 (in Italian).

    Google Scholar 

  • van de Poll, W. H., M. A. van Leeuwe, J. Roggeveld & A. G. J. Buma, 2005. Nutrient limitation and high irradiance acclimation reduce PAR and UV induced viability loss in the Antarctic diatom Chaetoceros brevis. Journal of Phycology 41: 840–850.

    Article  Google Scholar 

  • Whitehead, K. & J. I. Hedges, 2002. Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry. Marine Chemistry 80: 27–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was presented as a contributed article at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—the fifteenth workshop of the International Association of phytoplankton taxonomy and ecology (IAP). GF thanks Ø. Moestrup (Uni. Copenhagen—DK) for generously providing the Borghiella culture and introducing her to the world of dinoflagellates. The authors also thank R. Sommaruga (Uni. Innsbruck—A) for UVR measurements, D. Tait for DOC analyses, F. Corradini for chemical analyses, F. Ciutti and A. Gandolfi for comments, V. Pinamonti and G. Leonardi for sampling, L. Ress, D. Calliari and L. Dal Bello for cell counts. This study was partially funded by the research project ECOPLAN (Province of Trento, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Flaim.

Additional information

This article is dedicated to Univ. Prof. Mag. Dr. Walter Larcher (Institute of Botany, University of Innsbruck), a leading pioneer in eco-physiological research of plants, on the occasion of his 80th birthday

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Articles from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaim, G., Rott, E., Frassanito, R. et al. Eco-fingerprinting of the dinoflagellate Borghiella dodgei: experimental evidence of a specific environmental niche. Hydrobiologia 639, 85–98 (2010). https://doi.org/10.1007/s10750-009-0013-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0013-5

Keywords

Navigation