Skip to main content
Log in

Non-lethal presence of predators modifies morphology and movement rates in Euplotes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many species are able to modify aspects of their behaviour and morphology in the presence of predators. The aim of this study was to investigate the relationship between the expression of morphological and behavioural defences according to the framework proposed by DeWitt et al (1999). Experiments were carried out using hypotrich ciliates of the genus Euplotes as prey and turbellarians of the genus Stenostomum as predators. The smaller species Euplotes octocarinatus showed a greater proportional increase in width, a reduction in foraging movement rates and an increase in maximum movement rates following exposure to predator cues. The larger Euplotes aediculatus induced lesser changes in width, similar reductions in movement during foraging and no change in maximum speed following predator exposure. These results provide evidence of a cospecialised relationship between morphological and behavioural defences. Despite substantial differences in the absence of predators, movement rates and lateral body width were similar in both species following predator exposure. The observed changes may be considered adaptive, gape limited flatworm predators are unable to ingest large Euplotes and a reduction in movement rates during foraging reduces predator encounter rates, while an increase in maximal movement rates increases chances of predator evasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altwegg, R., K. B. Marchinko, S. L. Duquette & B. R. Anholt, 2004. Dynamics of an inducible defence in the protist Euplotes. Archiv Fur Hydrobiologie 160: 431–446.

    Article  Google Scholar 

  • Altwegg, R., M. Eng, S. Caspersen & B. R. Anholt, 2006. Functional response and prey defence level in an experimental predator-prey system. Evolutionary Ecology Research 8: 115–128.

    Google Scholar 

  • Anholt, B. R. & E. E. Werner, 1995. Interaction between food availability and predation mortality mediated by adaptive-behavior. Ecology 76: 2230–2234.

    Article  Google Scholar 

  • Anholt, B. R. & E. E. Werner, 1998. Predictable changes in predation mortality as a consequence of changes in food availability and predation risk. Evolutionary Ecology 12: 729–738.

    Article  Google Scholar 

  • Anholt, B. R., E. Werner & D. K. Skelly, 2000. Effect of food and predators on the activity of four larval ranid frogs. Ecology 81: 3509–3521.

    Google Scholar 

  • Blaustein, A. R., D. P. Chivers, L. B. Kats & J. M. Kiesecker, 2000. Effects of ultraviolet radiation on locomotion and orientation in Roughskin Newts (Taricha granulosa). Ethology 106: 227–234.

    Article  Google Scholar 

  • Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: The uncoupling of responses. American Naturalist 152: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Brodie, E. D. I., 1992. Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46: 1284–1298.

    Article  Google Scholar 

  • Dayton, G. H., D. Saenz, K. A. Baum, R. B. Langerhans & T. J. DeWitt, 2005. Body shape, burst speed and escape behavior of larval anurans. Oikos 111: 582–591.

    Article  Google Scholar 

  • DeWitt, T. J., A. Sih & J. A. Hucko, 1999. Trait compensation and cospecialisation in a freshwater snail: Size shape and antipredator behaviour. Animal Behaviour 58: 397–407.

    Article  PubMed  Google Scholar 

  • Dixon, S. M. & R. L. Baker, 1988. Effects of size on predation risk, behavioral-response to fish, and cost of reduced feeding in larval Ischnura verticalis (Coenagrionidae, Odonata). Oecologia 76: 200–205.

    Article  Google Scholar 

  • Duquette, S. L., R. Altwegg & B. R. Anholt, 2005. Factors affecting the expression of inducible defences in Euplotes: Genotype, predator density and experience. Functional Ecology 19: 648–655.

    Article  Google Scholar 

  • Humphries, D. A. & P. M. Driver, 1970. Protean defence by prey animals. Oecologia 5: 285–302.

    Article  Google Scholar 

  • Kuhlmann, H. W., 1994. Escape response of Euplotes-Octocarinatus to turbellarian predators. Archiv Fur Protistenkunde 144: 163–171.

    Google Scholar 

  • Kuhlmann, H. W. & K. Heckmann, 1994. Predation risk of typical ovoid and winged morphs of Euplotes (Protozoa, Ciliophora). Hydrobiologia 284: 219–227.

    Article  Google Scholar 

  • Kusch, J., 1993a. Behavioral and morphological-changes in ciliates induced by the predator Amoeba proteus. Oecologia 96: 354–359.

    Article  Google Scholar 

  • Kusch, J., 1993b. Induction of defensive morphological-changes in ciliates. Oecologia 94: 571–575.

    Article  Google Scholar 

  • Lawler, S. P., 1989. Behavioral-responses to predators and predation risk in 4 species of larval anurans. Animal Behaviour 38: 1039–1047.

    Article  Google Scholar 

  • Lima, S. L., 1998. Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. Stress and Behavior: 215–290.

  • McCollum, S. A. & J. Van Buskirk, 1996. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50: 583–593.

    Article  Google Scholar 

  • McPeek, M. A., A. K. Schrot & J. M. Brown, 1996. Adaptation to predators in a new community: Swimming performance and predator avoidance in damselflies. Ecology 77: 617–629.

    Article  Google Scholar 

  • Mikolajewski, D. J. & F. Johansson, 2004. Morphological and behavioral defenses in dragonfly larvae: Trait compensation and cospecialization. Behavioral Ecology 15: 614–620.

    Article  Google Scholar 

  • Morin, P., 1999. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80: 752–760.

    Google Scholar 

  • Pardi, L. & F. Papi, 1967. Kinetic and tactic responses. In Waterman, T. H. (ed.), The Physiology of Crustacea. Academic Press, New York and London: 365–399.

    Google Scholar 

  • Relyea, R. A., 2001. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82: 523–540.

    Article  Google Scholar 

  • Rundle, S. D. & C. Bronmark, 2001. Inter- and intraspecific trait compensation of defence mechanisms in freshwater snails. Proceedings of the Royal Society of London Series B-Biological Sciences 268: 1463–1468.

    Article  CAS  Google Scholar 

  • Schaffner, A. K. & B. R. Anholt, 1998. Influence of predator presence and prey density on behavior and growth of damselfly larvae (Ischnura elegans) (Odonata: Zygoptera). Journal of Insect Behavior 11: 793–809.

    Article  Google Scholar 

  • Tillmann, U. & W. Lampert, 1984. Competitive ability of differently sized daphnia species—an experimental test. Journal of Freshwater Ecology 2: 311–323.

    Google Scholar 

  • Tollrian, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.

    Google Scholar 

  • Touchon, J. C. & K. M. Warkentin, 2008. Fish and dragonfly nymph predators induce opposite shifts in color and morphology of tadpoles. Oikos 117: 634–640.

    Article  Google Scholar 

  • Van Buskirk, J. & S. A. McCollum, 2000. Functional mechanisms of an inducible defence in tadpoles: Morphology and behaviour influence mortality risk from predation. Journal of Evolutionary Biology 13: 336–347.

    Article  Google Scholar 

  • Wiackowski, K. & A. Staronska, 1999. The effect of predator and prey density on the induced defence of a ciliate. Functional Ecology 13: 59–65.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank John Taylor for the use of microscopic equipment (funded by CFI) and Maarten Voordouw for his insightful comments on earlier versions of this manuscript. This work was funded by an NSERC Discovery grant awarded to Bradley R. Anholt and the Canada Research Chairs programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edd Hammill.

Additional information

Handling editor: S. I. Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammill, E., Kratina, P. & Anholt, B.R. Non-lethal presence of predators modifies morphology and movement rates in Euplotes . Hydrobiologia 621, 183–189 (2009). https://doi.org/10.1007/s10750-008-9644-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9644-1

Keywords

Navigation