, Volume 609, Issue 1, pp 59–70 | Cite as

Regulated discharge produces substantial demographic changes on four typical fish species of a small salmonid stream

  • Michaël OvidioEmail author
  • Hervé Capra
  • Jean-Claude Philippart


A hydroelectric power plant (HPP) started operation in December 2002 on the River Lhomme, (mean annual flow: 1.78 ms−1; mean annual water temperature: 9.9°C). The new HPP bypasses the river over a length of 1.2 km. The minimum flow allowed in the bypassed section is currently fixed at 0.220 ms−1. Before the construction of the HPP, two contrasted 150-m-long reaches of the Lhomme were selected to estimate their total fish population abundance and to analyse their fish population dynamics. Electrofishing was carried out in each of these two reaches on 23 April 2002 in a natural flow situation to remove the fish. Other inventories were carried out in late April or early May in 2003, 2004, 2005 and 2006 in minimum flow conditions. The results revealed a prompt and severe decrease in the total fish biomass (up to 81% for grayling from 2002 to 2006) combined with severe changes in the fish community structure that were not observed in a reference site. The effects of the flow reduction varied considerably depending on the size of the individuals, the species concerned and their habitat availability, which was modelled using a classical physical habitat simulation (EVHA method).


Minimum flow Fish community Habitat modelling Size composition Biomass Salmonid stream 



This project was financially supported by the Ministry of Walloon Region-DGRNE-Water Division-Unnavigable watercourses (represented by F. Lambot and P. Orban) and by a bilateral collaboration project (Tournesol project) between the University of Liège (financed by the CGRI) and the Cemagef of Lyon (financed by Direction de la Cooperation Scientifique et Universitaire). The manuscript was mainly written during a post-doctoral research stay of Michaël Ovidio in the Quantitative Hydroecology Laboratory of Lyon, which was financed by the Cemagref (financial support of SREI for reception of foreign researchers). J.C. Philippart is a research associate of the Belgian FNRS. The authors wish to thank Yvan Neus, Gilles Rimbaud (ULg) and Pascal Roger (Cemagref) for field habitat measures as well as the Walloon Fisheries Service and the Ministry of Walloon Region-Water Division for electric fishing surveys. We also thank the HPP owners and M. Champagne (local organisation of fishermen) for their kind collaboration. Anonymous reviewers provided helpful comments.


  1. Acreman, M. & M. J. Dunbar, 2004. Defining environmental river flow requirements- a review. Hydrology and Earth System Sciences 8: 861–876.CrossRefGoogle Scholar
  2. Baran, P., M. Delacoste, F. Dauba, J. M. Lascaux, A. Belaud & S. Lek, 1995. Effects of reduced flows on brown trout (Salmo trutta L.) populations downstream dams in French Pyrenées. Regulated Rivers 10: 347–361.CrossRefGoogle Scholar
  3. Belaud, A., P. Chaveroche, P. Lim, & C. Sabaton, 1989. Probability-of-use curves applied to brown trout (Salmo trutta fario L.) in rivers of southern France. Regulated Rivers 3: 321–336.CrossRefGoogle Scholar
  4. Bern Convention, 1979. Convention on the conservation of European wildlife and natural habitats, Bern/Berne, Council of Europe, 19/09/1974.Google Scholar
  5. Bovee, K. D., 1978 Probability of Use Criteria for the Family Salmonidae. Instream Flow Information Paper No. 4, FWS/OBS 78/07, U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC 80 p.Google Scholar
  6. Bovee, K. D., 1982. A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. FWS/OBS 82/26. US Fish and Wildlife Service: Fort Collins, USA.Google Scholar
  7. Capra, H., C. Sabaton, V. Gouraud, Y. Souchon & P. Lim, 2003. A population dynamic model and habitat simulation as a tool to predict brown trout demography in natural and bypassed stream reaches. River Research and Applications 19: 551–568.CrossRefGoogle Scholar
  8. Cattanéo, F., B. Hugueny & N. Lamouroux, 2003. Synchrony in brown trout, Salmo trutta, population dynamics: a ‘Moran effect’ on early-life stages. Oikos 100(1): 43–54.CrossRefGoogle Scholar
  9. Dyk, V., 1984. The characteristics of grayling biotopes. Acta Veterinaria Brno 53:71–80.Google Scholar
  10. EIFAC, 2006. European Inland Fisheries Advisory Commission. Summary recommendations of the EIFAC Symposium on Hydropower, Flood Control and Water Abstraction. Mondsee, Austria, 14–21 June 2006. .Google Scholar
  11. EU Water Framework Directive. 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy.Google Scholar
  12. Freyhof, J., M. Kottelat & A. Nolte, 2005. Taxonomic diversity of European Cottus with description of eight new species (Teleostei: Cottidae). Ichthyiological Exploration of Freshwaters 16: 107–172.Google Scholar
  13. Gibbins, C. N. & J. Heslop, 1998. An evaluation of inter-basin water transfers as a mechanism for augmenting salmonid and grayling habitat in the River Wear. North-East England Regulated Rivers-Research and Management 14: 357–382.CrossRefGoogle Scholar
  14. Ginot, V., Y. Souchon, H. Capra, P. Breil & S. Valentin, 1998. Logiciel EVHA 2.0. Evaluation de l’habitat physique des poissons en rivière: Guide méthodologique. Cemagref BEA/LHQ et Ministère de l’Aménagement du Territoire et de l’Environnement.Google Scholar
  15. Gouraud, V., J.-L. Baglinière, P. Baran, C. Sabaton, P. Lim & D. Ombredane, 2001. Factors regulating brown trout populations in two French rivers: application of a dynamic population model. Regulated Rivers 17: 557–569.CrossRefGoogle Scholar
  16. Gouraud, V., P. Baran, P. Lim & C. Sabaton, 1999. Dynamics of a population of brown trout (Salmo trutta) and fluctuations in physical habitat conditions-experiments on a stream in the Pyrenees; first results. In Cowx, IG (ed.), Rivers Fisheries. Fishing News Books. Blackwell Science, Oxford: 126–142.Google Scholar
  17. Gouraud, V., C. Sabaton & H. Capra, 2004. Role of habitat variability in trout population dynamics: application of a dynamic population model to three French rivers. Hydroécologie Appliquée 14: 221–244.CrossRefGoogle Scholar
  18. Greenberg, L., P. Svendsen & A. Harby, 1996. Availability of microhabitats and their use by brown trout (Salmo trutta) and grayling (Thymallus thymallus) in the River Vojmån, Sweden. Regulated Rivers 12: 287–303.CrossRefGoogle Scholar
  19. Huet, M., 1949. Aperçu de la relation entre la pente et les populations piscicoles des eaux courantes. Swiss Journal of Hydrology 11: 332–351.Google Scholar
  20. Kubečka, J., J. Matěna & P. Hartvich, 1997. Adverse ecological effects of small hydropower stations in the Czech Republic: 1. Bypass plants. Regulated Rivers: Research and Management 13: 101–113.CrossRefGoogle Scholar
  21. Lamouroux, N., H. Capra, M. Pouilly & Y. Souchon, 1999. Fish habitat preferences in large streams of southern France. Freshwater Biology 42: 673–687.CrossRefGoogle Scholar
  22. Lamouroux, N., J.-M. Olivier, H. Capra, M. Zylberblat, A. Chandesris & P. Roger, 2006. Fish community changes after minimum flow increase: testing quantitative predictions in the Rhône River at Pierre-Bénite, France. Freshwater Biology 51: 1730–1743.CrossRefGoogle Scholar
  23. Limerinos, J. T., 1970. Determination of the Manning coefficient from measured bedroughness in natural channels. U.S. Geol. Survey Water Supply paper 1898B, 47 p.Google Scholar
  24. Mallet, J. P., N. Lamouroux, P. Sagnes & H. Persat, 2000: Habitat preferences of European grayling and brown trout in a medium size stream, the Ain river, France. Journal of Fish Biology 56: 1312–1326.CrossRefGoogle Scholar
  25. Muzik, V., 1995. The effect of small hydroelectric power-plant on ichthyofauna of the Lubochinanka brook. Zivocisna Vyroba 40: 221–226.Google Scholar
  26. Norris, R. H. & M. C. Thoms, 1999. What is the river health? Freshwater Biology 41: 197–209.CrossRefGoogle Scholar
  27. Northcote, T. G., 1995. Comparative biology and management of Arctic and European grayling (Salmonidae, Thymallus). Reviews in Fish Biology and Fisheries 5: 141–194.Google Scholar
  28. Ovidio, M., F. Paquer, H. Capra, F. Lambot, P. Gerard, E. Dupont & J.-C. Philippart, 2004. Effects of a micro hydroelectric power plant upon population abundance, mobility and reproduction behaviour of European grayling T. thymallus and brown trout S. trutta in a salmonid river. In Garcia de Jalon Lastra, D. & P. Vizcaino Martinez (eds), Proceedings of the Fifth International Symposium on Ecohydraulics, Aquatic Habitats: Analysis and Restoration Madrid, Spain: 56–62.Google Scholar
  29. Paller, M. H., 1997. Recovery of a reservoir fish community from drawdown related impacts. North American Journal of Fisheries Management 17: 726–733.Google Scholar
  30. Peterson, H. H., 1968. The grayling, Thymallus thymallus (L.), of the Sundsvall Bay Area. Report Institute of Freshwater Research Drottningholm 48: 36–56.Google Scholar
  31. Pouilly, M., S. Valentin, H. Capra, V. Ginot & Y. Souchon, 1995. Note technique: méthode des microhabitats, principes et protocoles d’application. Bulletin Français de la Pêche et de la Pisciculture 336: 41–54.Google Scholar
  32. Philippart, J. C., 1979. Etude des populations de poissons dans les trois ruisseaux oligotrophes du basin de la Roer supérieure (Belgique). Bulletin de la Société Royale des Sciences de Liège 5–8: 212–217.Google Scholar
  33. Philippart, J.-C. & M. Vranken, 1983. Atlas des Poissons de Wallonie, distribution, écologie, éthologie, pêche, conservation. Cahiers Ethologie Appliquée 3: 395 pp.Google Scholar
  34. Rogers, M. H., M. S. Allen & D. Jones, 2005. Relationship between river surface level and fish assemblage in the Ocklawaha River, Florida. River Research and Applications 21: 501–511.CrossRefGoogle Scholar
  35. Sabaton, C., S. Valentin & Y. Souchon, 1995. La méthode des microhabitats. Protocoles d’application. HE-31/95/10. EDF-DER/Cemagref.Google Scholar
  36. Sabaton, C., Y. Souchon, J.-M. Lascaux, F. Vandewalle, P. Baran, D. Baril, H. Capra, V. Gouraud, F. Lauters, P. Lim, G. Merle & G. Paty, 2004. The “Guaranteed Flow Working Group”: a French evaluation of microhabitat component. Hydroécologie Appliquée 14: 245–270.CrossRefGoogle Scholar
  37. Santos, J. M., M. T. Ferreira, A. N. Pinheiro & J. H. Bochechas, 2006. Effects of small hydropower plants on fish assemblage in medium-sized streams in central and northern Portugal. Aquatic Conservation: Marine and Freshwater ecosystems 16: 373–388.CrossRefGoogle Scholar
  38. Souchon, Y., F. Trocherie, E. Fragnoud & C. Lacombe, 1989. Les modèles numériques des microhabitats des poissons: application et nouveaux développements. Revue des Sciences de l’Eau 2: 807–830.Google Scholar
  39. VandenBossche, J. P., 2005. Evolution de la qualité biologique des cours d’eau de Wallonie de 1990 à 2002. Carte, poster. Centre de Recherches de la Nature, des Forêts et du bois, DGRNE-MRW, B-5030 Gembloux.Google Scholar

Copyright information

© Springer Science+Business Media B.V. and FAO 2008

Authors and Affiliations

  • Michaël Ovidio
    • 1
    Email author
  • Hervé Capra
    • 2
  • Jean-Claude Philippart
    • 1
  1. 1.Biology of Behaviour Unit, Laboratory of Fish Demography and HydroecologyUniversity of LiègeTihangeBelgium
  2. 2.Biologie des Ecosystemes AquatiquesCemagref of LyonLyonFrance

Personalised recommendations