Skip to main content
Log in

Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banse, K., 1977. Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Marine Biology 41: 199–212.

    Article  CAS  Google Scholar 

  • Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7: 13–20.

    Google Scholar 

  • Berk, S. G., D. C. Brownlee & D. R. Heinle, 1977. Ciliates as a food source for marine planktonic copepods. Microbial Ecology 4: 27–40.

    Article  Google Scholar 

  • Bourdelais, A. J., C. R. Tomas, J. Naar, J. Kubanek & D. G. Baden, 2002. New fishkilling algal in coastal Delaware produces neurotoxins. Environmental Health Perspectives 110: 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Burkholder, J. M. & H. B. Glasgow, 2001. History of Toxic Pfiesteria in North Carolina Estuaries from 1991 to the present. BioScience 51: 827–841.

    Article  Google Scholar 

  • Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn & N. J. P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine Biology 93: 581–590.

    Article  CAS  Google Scholar 

  • Buskey, E. J., 1997. Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Marine Ecology Progress Series 153: 77–89.

    Google Scholar 

  • Calbet, A. & M. R. Landry, 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49: 51–57.

    Article  CAS  Google Scholar 

  • Christaki, U., S. Jacquet, J. R. Dolan, D. Vaulot & F. Rassoulzadegan, 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnology and Oceanography 44: 52–61.

    Article  Google Scholar 

  • Cloern, J. E., 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio–the conversion factor between productivity and growth rate. Limnology and Oceanography 40: 1313–1321.

    Article  Google Scholar 

  • Collos, Y., J. Husseini-Ratrema, B. Bec, A. Vaquer, T. L. Hoai, C. Rougier, V. Pons & P. Souchu, 2005. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550: 83–93.

    Article  CAS  Google Scholar 

  • Cushing, D. H., 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Advance in Marine Biology 26: 250–293.

    Google Scholar 

  • Dolan, J. R. 1991. Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Marine Biology 111: 303–309

    Article  Google Scholar 

  • Dolan, J., H. Claustre, F. Carlotti, S. Plounevez & T. Moutin, 2002. Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean. Deep-Sea Research I 49: 1217–1232.

    Article  Google Scholar 

  • Dolan, J. R. & D. W. Coats, 1990. Seasonal abundance of planktonic ciliates and microflagellates in mesohaline Chesapeake Bay waters. Estuarine, Coastal and Shelf Science 31: 157–175.

    Article  Google Scholar 

  • Dolan, J. R. & K. McKeon. 2004. The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption? Oceanic Science Discussion 1: 21–36.

    Article  Google Scholar 

  • Eppley, R. W., F. M. H. Reid & J. D. H. Stickland, 1970. Estimates of phytoplankton crop size, growth rate and primary production. Bulletin of the Scripps Institution of Oceanography of the University of California 17: 33–42.

    Google Scholar 

  • Epstein, S. & M. Shiaris, 1992. Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates & ciliates. Microbial Ecology 23: 211–225.

    Article  Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates. In Marshall, K. C. (ed.), Advances in Microbial Ecology, Vol. 9. Plenum Press, New York, 57–97.

    Google Scholar 

  • Gallegos, C. L. & T. E. Jordan, 1997. Seasonal progression of factors limiting phytoplankton pigment biomass in the Rhode River estuary, Maryland (USA). I. Controls on phytoplankton growth. Marine Ecology Progress Series 161: 185–198.

    CAS  Google Scholar 

  • Gatham, I. J. & G. Y. Rhee, 1981. Comparative kinetic studies of nitrate limited growth and nitrate uptake in phytoplankton in continuous culture. Journal of Phycology 17: 309–314.

    Article  Google Scholar 

  • Gifford, D. J., 1988. Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia. Marine Ecology Progress Series 47: 249–258.

    Google Scholar 

  • del Giorgio, P. A., J. M. Gasol, D. Vaqué, P. Mura, S. Agustí & C. M. Duarte, 1996. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnology and Oceanography 41: 1169–1179.

    Article  Google Scholar 

  • Gonzalez, J. M., E. B. Sherr & B. F. Sherr, 1993. Differential feeding by marine flagellates on growing vs. starving & on motile vs. non-motile, bacterial prey. Marine Ecology Progress Series 102: 257–267.

    Google Scholar 

  • Irigoien, X., K. J. Flynn & R. P. Harris, 2004. Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? Journal of Plankton Research 27:313–321.

    Article  Google Scholar 

  • Jeong, H. J., Y. D. Yoo, J. Y. Park, J. Y. Song, S. T. Kim, S. H. Lee, K. Y. Kim & W. H. Yih, 2005. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquatic Microbial Ecology 40: 133–150.

    Google Scholar 

  • Johnson, M. D., M. Rome & D. K. Stoecker, 2003. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnology and Oceanography 48: 238–248.

    Article  Google Scholar 

  • Kagami, M., A. de Bruin, B. W. Ibelings & E. Van Donk, 2007. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578: 113–129.

    Article  Google Scholar 

  • Knap, A., A. Michaels, A. Close, H. Ducklow & A. Dickson (eds), 1996. Protocols for the joint global ocean flux study (JGOFS) core measurements. UNESCO, Bergen, Norway.

    Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology 67: 283–288.

    Article  Google Scholar 

  • Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare & M. E. Ondrusek, 2000. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Marine Ecology Progress Series 201: 57–72.

    CAS  Google Scholar 

  • Landry, M. R., S. L. Brown, L. Campbell, J. Constantinou & H. Liu, 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep-Sea Research II, 45: 2353–2368.

    Article  CAS  Google Scholar 

  • Latasa, M., M. R. Landry, L. Schlüter & R. R. Bidigare, 1997. Pigment-specific growth and grazing rates of phytoplankton in the central equatorial Pacific. Limnology and Oceanography 42: 289–298.

    Article  CAS  Google Scholar 

  • Lehman, J. T., 1976. The filter-feeder as an optimal forager & the predicted shapes of feeding curves. Limnology and Oceanography 21: 501–516.

    Article  Google Scholar 

  • Lehman, J. T., 1991. Interacting growth and loss rates: The balance of top-down and bottom-up controls in plankton communities. Limnology and Oceanography 36: 1546–1554.

    CAS  Google Scholar 

  • Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Glibert & L. W. Harding, 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay. Estuaries 19: 371–385.

    Article  CAS  Google Scholar 

  • Marinho, M. M., S. V. Rodrigues, 2003. Phytoplankton of an eutrophic tropical reservoir: comparison of biomass estimated from counts with chlorophyll-a biomass from HPLC measurements. Hydrobiologia 505: 77–88

    Article  Google Scholar 

  • Marshall, S. M., 1969. Protozoa, order Tintinnia. Conseil International pour l’ Exploration de la Mer, Fiches d’Indentification de Zooplancton, fiches, 117–127.

  • McManus, G. B. & M. C. Ederington-Cantrell, 1992. Phytoplankton pigments and growth rates & microzooplankton grazing in a large temperate estuary. Marine Ecology Progress Series 87: 77–85.

    Google Scholar 

  • Miller, C. A., D. L. Penry & P. M. Glibert, 1995. The impact of trophic interactions on rates of nitrogen regeneration and grazing in Chesapeake Bay. Limnology and Oceanography 40: 1005–1011.

    Article  CAS  Google Scholar 

  • Monger, B. C., M. R. Landry & S. L. Brown, 1999. Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnology and Oceanography 44: 1917–1927

    Article  CAS  Google Scholar 

  • Paranjape, M. A., 1990. Microzooplankton herbivory on the Grand Bank (Newfoundland, Canada): a seasonal study. Marine Biology 107: 321–328.

    Article  Google Scholar 

  • Pennock, J. R., J. H. Sharp & W. S. Schroeder, 1994. What controls the expression of estuarine eutrophication? Case studies of nutrient enrichment in the Delaware Bay and Mobile Bay estuaries, USA. In Dyer, K. R. & R. J. Orth (eds), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen, Fredensborg, 139–146.

    Google Scholar 

  • Price, K. S., 1998. A framework for a Delaware Inland Bays environmental classification. Environmental Monitoring and Assessment 51: 285–298.

    Article  CAS  Google Scholar 

  • Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103

    Google Scholar 

  • Raven, J. A. & J. E. Kübler, 2002. New light on the scaling of metabolic rate with the size of algae. Journal of Phycology 38: 11–16.

    Article  Google Scholar 

  • Raven, J. A., 1998. The twelfth Tansley lecture. Small is beautiful: the picophytoplankton. Functional Ecology 12: 503–513.

    Article  Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369/370: 11–26.

    Article  Google Scholar 

  • Smetacek, V., 1981. The annual cycle of protozooplankton in the Kiel Bight. Marine Biology 63: 1–11.

    Article  Google Scholar 

  • Stoecker, D. K., S. M. Gallager, C. J. Langdon & L. H. Davis, 1995. Particle capture by Favella sp. (Ciliata, Tintinnina). Journal of Plankton Research 17: 1105–1124.

    Article  Google Scholar 

  • Stoecker, D. K., T. L. Cucci, E. M. Hulburt & C. M. Yentsch, 1986. Selective feeding by Balanion sp. (Ciliata: Balanionidae) on phytoplankton that best support its growth. Journal of Experimental Marine Biology and Ecology 95: 113–130.

    Article  Google Scholar 

  • Strom, S., 2002. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 480: 41–54.

    Article  Google Scholar 

  • Strom, S. L. & N. A. Welschmeyer, 1991. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnology and Oceanography 36: 50–63.

    Google Scholar 

  • Strom, S. L., M. A. Brainard, J. L. Holmes & M. B. Olson, 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Marine Biology 38: 355–368.

    Article  Google Scholar 

  • Sun, J. & D. Y. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Taniguchi, A. & Y. Takeda, 1988. Feeding rate and behavior of the tintinnid ciliate Favella taraikaensis, observed with a high speed VTR system. Marine Microbial Food Webs 3: 21–34.

    Google Scholar 

  • Tomas, C. R. (ed.), 1997. Identifying marine phytoplankton. Academic Press, San Diego.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervolkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen internationale Vereiningung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Uye, S., N. Nagano & H. Tamaki, 1996. Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. Journal of Oceanography 52: 689–703.

    Article  Google Scholar 

  • Verity, P. G., D. K. Stoecker, M. E. Sieracki & J. R. Nelson, 1996. Microzooplankton grazing of primary production at 140° W in the equatorial Pacific. Deep-Sea Research II 43: 1227–1256.

    Article  CAS  Google Scholar 

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.

    Article  CAS  Google Scholar 

  • Wetherbee, R. & R. A. Andersen, 1992. Flagella of a chrysophycean alga play an active role in prey capture and selection. Protoplasma 166: 1–7.

    Article  Google Scholar 

  • Zhang, L. Y., J. Sun, D. Y. Liu & Z. S. Yu, 2005. Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China. Acta Oceanologica Sinica 24: 85–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the comments and suggestions of Dr. J, Padisák and Dr. F.X. Fu which resulted in an improvement of the paper. This study was supported by the NSFC 40306025, 40676089 and NBRPC 2006CB400605 to JS and NSF OCE 0423418 and EPA ECOHAB R83-1041 to DAH. The remarks of two anonymous reviewers greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Feng, Y., Zhang, Y. et al. Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay. Hydrobiologia 589, 127–139 (2007). https://doi.org/10.1007/s10750-007-0730-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0730-6

Keywords

Navigation