Skip to main content
Log in

Shallow lakes, the water framework directive and life. What should it all be about?

  • Shallow Lakes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The European Water Framework Directive offers an unprecedented opportunity for improvement of ecological quality of both freshwater and marine systems. It has implications for every aspect of how catchments are used by human societies and could potentially mean a step change in how waters and catchments are managed. It must be implemented, however, by official bodies, which seem likely to apply ecologically outdated approaches, used in the past simply to manage water quality, to tackle the very different problem of improving ecological quality. Ecological quality can be characterised by parsimony of available nutrients, characteristic physical and biological structure, strong connectivity among systems and mechanisms of resilience to cope with normal, natural change. The implications of these are that high quality systems in a given location do not have unique lists of species and single formulae for how the biodiversity is constituted. They have considerable inherent variability whilst preserving their fundamental functional characteristics. This appears not to have been recognised by official bodies that seek simple taxonomic indices as measures of quality. To some extent this is a function of the way the Directive has been written, but a slavish adherence to this approach may undermine the spirit of the Directive and result in a failure to bring about the fundamental reform that is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ball, L. A., 2003. Carbon acquisition in the chrysophyte algae. PhD Thesis, University of Dundee, UK.

  • Balmford, A., A. Bruner, P. Cooper, R. Costanza, S. Farber, R. E. Green, M. Jenkins, P. Jefferiss, V. Jessamy, J. Madden, K. Munro, N. Myers, S. Naeem, J. Paavola, M. Rayment, S. Rosendo, J. Roughgarden, K. Trumper & R. K. Turner, 2002. Economic reasons for conserving wild nature. Science 297: 950–953.

    Article  PubMed  CAS  Google Scholar 

  • Butcher , R. W., 1947. Studies in the Ecology of Rivers V11. The algae of organically enriched waters. Journal of Ecology 33: 186–191.

    Google Scholar 

  • Calman, R. J., R. E. Bilbo, D. E. Schindler & J. M. Belfield, 2002. Pacific salmon, nutrients and the dynamics of freshwater ecosystems. Ecosystems 5: 399–417.

    Article  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Community L 327: 1–73.

    Google Scholar 

  • Fisher, J., C. James & B. Moss, 2006. What determines the diatom communities of submerged freshwater plants? Implications for the use of community indices in determining ecological quality. Nova Hedwigia Suppl. 130: 51–72.

    Google Scholar 

  • Fitkau, E. J., 1970. Role of caimans in the nutrient regime of mouth-lakes in Amazon effluents (a hypothesis). Biotropica 2: 138–142.

    Article  Google Scholar 

  • Goulding, M., 1980. The Fishes and the Forest: Explorations in Amazonian Natural history. University of California Press, Los Angeles.

    Google Scholar 

  • Goulding, M., 1981. Man and Fisheries on an Amazon Frontier. Junk, The Hague.

    Google Scholar 

  • Goulding, M., N. J. H. Smith & D. J. Mahar, 1996. Floods of Fortune. Ecology and Economy along the Amazon. Columbia University Press, New York.

    Google Scholar 

  • Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory. J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, J. Cromak & K. W. Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133–302.

    Google Scholar 

  • Jacobson, M. C., R. J. Charlson, H. Rodhe & G. H. Orians, 2000. Earth System Science. Academic Press, London.

    Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Berichte der deutsche Botanische Gesellschaft 26 A: 505–519.

    Google Scholar 

  • Lange-Bertalot, H., 1979. Pollution tolerance as a criterion for water quality estimation. Nova Hedwigia Beiheft 64: 285–304.

    Google Scholar 

  • Klinge, M., M. P Grimm & S. H. Hosper, 1995. Eutrophication and ecological rehabilitation of Dutch lakes: presentation of a new conceptual framework. Water Science & Technology 31: 207–218.

    Article  Google Scholar 

  • Leopold, A., 1996. A Sand County Almanac with Essays on Conservation from Round River. Oxford University Press, New York.

    Google Scholar 

  • Millennial Ecosystem Assessment Board, 2005. Millennial Ecosystem Assessment Synthesis Report. United Nations Environment Programme, New York.

    Google Scholar 

  • Moss, B., 1972. The influence of environmental factors on the distribution of freshwater algae: an experimental study. 1. Introduction and the influence of calcium concentration. Journal of Ecology 60: 917–932.

    Article  CAS  Google Scholar 

  • Moss, B., 1973a. The influence of environmental factors on the distribution of freshwater algae: an experimental study. 2. The role of pH and the carbon dioxide-bicarbonate system. Journal of Ecology 61: 157–177.

    Article  CAS  Google Scholar 

  • Moss, B., 1973b. The influence of environmental factors on the distribution of freshwater algae: an experimental study. 4. Growth of test species in natural lake waters, and conclusion. Journal of Ecology 61: 193–211.

    Article  CAS  Google Scholar 

  • Moss, B., 1995. The microwaterscape - a four-dimensional view of interactions among water chemistry, phytoplankton, periphyton, macrophytes, animals and ourselves. Water Science & Technology 32: 105–116.

    Article  CAS  Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernandez-Alaez, M. Fernandez Alaez, R. J. M. Franken, F. Garcia-Criado, E. M. Gross, M. Gyllstrom, L.-A. Hansson, K. Irvine, A. Jarvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Kunnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujo, M. Scheffer, K. Siewertsen, H. Smal, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation. Marine & Freshwater Ecosystems 13: 507–549.

    Article  Google Scholar 

  • National Water Council, 1981. River Quality—the 1980 Survey and Future Outlook. National Water Council, London.

    Google Scholar 

  • Palmer, M. A., E. S. Bernhardt, J. D. Allan, P. S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. M. Dahm, J. Follstad Shah, D. L. Galat, S. G. Loss, P. Goodwin, D. D. Hart, B. Haasett, R. Jenkinson, G. M. Kondolf, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano & E. Sudduth, 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208–217.

    Article  Google Scholar 

  • Reader, J., 2004. Cities. Heinemann, London.

    Google Scholar 

  • Reynoldson, T. B., 1966. The distribution and abundance of lake-dwelling triclads—towards a hypothesis. Advances in Ecological Research 3: 1–71.

    Article  Google Scholar 

  • Ripple, W. J. & R. L. Beschta, 2004a. Wolves, elk, willows, and tropic cascades in the upper Gallantin Range of South-western Montana, USA. Forest Ecology and Management 200: 161–181.

    Article  Google Scholar 

  • Ripple, W. J. & R. L. Beschta, 2004b. Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience 54: 755–766.

    Article  Google Scholar 

  • Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verhandlungen der internationale Vereinigung theoretische und angewandte Limnologie 24: 38–54.

    Google Scholar 

  • Sheail, J., 1998. Nature Conservation in Britain. The Formative Years. The Stationery Office, London.

    Google Scholar 

  • Taylor, P., 2005. Beyond Conservation—A Wildland Strategy. Earthscan, London.

    Google Scholar 

  • Welcomme, R. L., 1979. Fisheries Ecology of Floodplain Rivers. Longman, London.

    Google Scholar 

  • Wright , J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20: 181–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Moss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, B. Shallow lakes, the water framework directive and life. What should it all be about?. Hydrobiologia 584, 381–394 (2007). https://doi.org/10.1007/s10750-007-0601-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0601-1

Keywords

Navigation