Skip to main content
Log in

Using the Location Method for Simulated-and-Experimental Location of Single-Phase-to-Earth Faults in Overhead Lines of 6 – 35 kV Distribution Networks

  • POWER SYSTEMS AND ELECTRIC NETWORKS
  • Published:
Power Technology and Engineering Aims and scope

A simulation model of a linear high-frequency path of an overhead power line (OPL) implemented in the PSCAD software environment is considered. The model allows studying the transmission of location signals in the OPLs of 6 – 35 kV distribution networks in the presence of single-phase-to-earth faults (SPEF). Simulated and experimental TDR traces for various SPEFs are compared. Methods of location-based determination of the SPEF distance and location are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kasimov, R. G. Minullin, Yu. V. Piskovatskii, and E. Yu. Abdullazyanov, “Simulated and experimental location of faults of conductors of overhead power lines,” Élektrosvyaz’, No. 4, 65 – 71 (2019).

  2. I. L. Artsishevskii, Location of Faults of Transmission Lines in Insulated-Neutral Networks [in Russian], Vysshaya Shkola, Moscow (1989).

    Google Scholar 

  3. E. A. Arzhannikov and A. M. Chukhin, Methods and Devices for Fault Location in Transmission Lines [in Russian], NTF Énergoprogress, Énergetik, Moscow (1998).

  4. B. K. Maksimov, Ya. L. Artsishevskii, and E. Lkhamsuren, “Digital technologies of reducing the time of location of single-phase-to-earth faults in a 10 kV overhead line network,” Relein. Zashch. Avtomatiz., 28(3), 27 – 32 (2017).

    Google Scholar 

  5. K. V. Tarasov, “Use of fault indicators in 6 – 10 kV distribution networks,” Élektroénerg. Pered. Raspred., No. 4, 73 – 74 (2014).

  6. A. L. Kulikov, A. A. Loskutov, and P. S. Pelevin, “Wave-pattern recognition algorithm for identification of a damaged section in aerial cable transmission lines,” Élektrichestvo, No. 3, 11 – 17 (2018).

  7. R. G. Khuzyashev, S. M. Tukaev, and I. L. Kuz’min, “Studying the change of the time parameters of transient signals in a 6(10) kV distribution network for the traveling-wave fault location method,” Énergobezopasn. Énergosberezh., No. 6, 5 – 17 (2018).

  8. R. G. Minullin, I. Sh. Fardiev, O. I. Karpenko, E. V. Zakamskii, et al., “Location monitoring of inhomogeneities in electrical distribution networks,” Élektrotekhika, No. 5, 2 – 10 (2006).

  9. R. G. Minullin and I. Sh. Fardiev, “Physical principles of fault diagnostics in overhead lines of electrical distribution networks,” Izv. Vuzov Probl. Énerget., No. 5 – 6, 43 – 47 (2004).

  10. Transient Analysis for PSCAD Power System Simulation: EMTDC User’s Guide. Vol. 4.6, Manitoba HVDC Research Centre.

  11. PSCAD Knowledge-Base, Manitoba HVDC Research Centre, https://hvdc.ca/knowledge-base

  12. A. I. Shalin, “Short circuits to earth in 6 – 35 kV transmission lines. Features of occurrence and protection devices,” Nov. Élektrotekh., 31(1), 73 – 75 (2005).

    Google Scholar 

  13. R. G. Minullin and E. V. Zakamskii, ”Location of faults in 6 – 35 kV electrical networks by the pulse method,” in: Proc. Russian National Symp. on Power Engineering. Vol. 2 [in Russian], Izd. KGÉU, Kazan (2001), pp. 62 – 64.

  14. R. G. Minullin, E. V. Zakamskii, and V. V. Andreev, “Studying the conditions of reflection of pulses in distribution networks of treelike topology,” Élektrotekhika, No. 10, 39 – 44 (2003).

  15. R. G. Minullin and E. V. Zakamskii, Detection of Damages in Electric Distribution Networks by the Location Method [in Russian], ITs Énergoprogress, Kazan (2004).

    Google Scholar 

  16. I. Sh. Fardiev, R. G. Minullin, E. V. Zakamskii, V. V. Andreev, and D. F. Gubaev, “Diagnostics of overhead lines of electrical distribution networks,” Izv. Vuzov Probl. Énerget., No. 7 – 8, 41 – 49 (2004).

  17. C. M. Portela, J. B. Gertrudes, M. C. Tavares, and F. J. Pissolato, “Earth conductivity and permittivity data measurements — influence in transmission line transient performance,” Electr. Power Syst. Res., 76, 907 – 915 (2006).

    Article  Google Scholar 

  18. Yu. P. Shkarin, “High-frequency paths of communication channels in power transmission lines. Parts 1 and 2,” Bibl. Élektrotekhn. (2001).

  19. R. G. Minullin, “Location monitoring of glaze-ice and rime deposits on and damages to conductors of overhead power transmission lines. Part 1,” Bibl. Élektrotekkn. (2017).

  20. V. G. Gerasimov et al. (eds.), Electrical Engineering Handbook: Generation, Transmission, and Distribution of Electricity. Vol. 3 [in Russian], Izd. MÉI, Moscow (2002).

  21. V. I. Idel’chik, Electric Power Systems and Networks [in Russian], Énergoatomizdat, Moscow (1989).

    Google Scholar 

  22. REIS-405 Computer Reflectometer [in Russian], https://www.eurostell.com/products/reis-405

  23. REIS-205 Digital Reflectometer [in Russian], https://www.eurostell.com/products/reis-205

  24. V. A. Kasimov, Method and Hardware-and-Software Systems for Location Monitoring of Icing and Faults in Overhead Transmission Lines. Doctoral Thesis [in Russian], Kazan (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Minullin.

Additional information

Translated from Élektricheskie Stantsii, No. 7, July 2020, pp. 33 – 40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minullin, R.G., Abdullazyanov, E.Y., Piskovatsky, Y.V. et al. Using the Location Method for Simulated-and-Experimental Location of Single-Phase-to-Earth Faults in Overhead Lines of 6 – 35 kV Distribution Networks. Power Technol Eng 54, 733–739 (2021). https://doi.org/10.1007/s10749-020-01279-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-020-01279-8

Keywords

Navigation