Skip to main content

Advertisement

Log in

The phagocytic role of macrophage following myocardial infarction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is one of the cardiovascular diseases with high morbidity and mortality. MI causes large amounts of apoptotic and necrotic cells that need to be efficiently and instantly engulfed by macrophage to avoid second necrosis. Phagocytic macrophages can dampen or resolve inflammation to protect infarcted heart. Phagocytosis of macrophages is modulated by various factors including proteins, receptors, lncRNA and cytokines. A better understanding of mechanisms in phagocytosis will be beneficial to regulate macrophage phagocytosis capability towards a desired direction in cardioprotection after MI. In this review, we describe the phagocytosis effect of macrophages and summarize the latest reported signals regulating phagocytosis after MI, which will provide a new thinking about phagocytosis-dependent cardiac protection after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABs:

Apoptotic bodies

BMDM:

Bone marrow-derived macrophage

BMP2:

Bone morphogenetic protein 2

C1qa:

Complement pathway activators

CCL2:

C-C motif chemokine ligand 2

CCR2:

C-C chemokine receptor type 2

CD36:

Cluster of differentiation 36

CD47:

Cluster of differentiation 47

CD86:

Cluster of differentiation 86

CDC:

Cardiosphere-derived cells

CX3CR1:

C-X3-C motif chemokine receptor 1

CXCL4:

Chemokine (C-X-C motif) ligand 4

DAMPs:

Danger-associated molecular patterns

EDIL3:

EGF-like repeats and discoidin I-like domain 3

ERK:

Extracellular signal-regulated kinase

EVs:

Extracellular vesicles

exos:

Exosomes

FPR1:

Formyl peptide receptor 1

FPR2:

Formyl peptide receptor 2

GAS6:

Growth arrest-specific gene 6

HLA-DR:

Human leukocyte antigen DR

IL-4:

Interleukin-4

IL-10:

Interleukin-10

IL-1β:

Interleukin-1β

IFN-γ:

Interferon gamma

I/R:

Ischemia/reperfusion

iRhom2:

Inactive rhomboid protein 2

IRF4:

Interferon regulatory factor 4

ITIM:

Immunoreceptor tyrosine-based inhibition motif

KDM3A:

Lysine-specific demethylase 3A

LC3-II:

Microtubule-associated protein light chain 3-II

Lgmn:

Legumain

LV:

Left ventricular

MCP-1:

Monocyte chemoattractant protein-1

M-CSF:

Macrophage colony-stimulating factor

MerTK:

Myeloid-epithelial-reproductive tyrosine kinase

MFG-E8:

Milk fat globule epidermal growth factor-like factor 8

MHCII:

Major histocompatibility complex class II

MI:

Myocardial infarction

MMP9:

Matrix metalloproteinase-9

Wnt1:

Wingless-type MMTV integration site family, member 1

MSC:

Mesenchymal stem cell

MVs:

Microvesicles

MyS3KO:

Myeloid cell-specific Smad3 knockout mice

NEAT1:

Nuclear enriched abundant transcript 1

NET:

Neutrophil extracellular trap

Nr4a1:

Nuclear receptor subfamily 4 group A member 1

OPN:

Osteopontin

PAR2:

Protease-activated receptor 2

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

PKCδ:

Protein kinase C δ

PS:

Phosphatidyl serine

PTX3:

Pentraxin-3

RhoA:

Ras homolog gene family, member A

ROS:

Reactive oxygen species

RvD1:

Resolvin D1

S100A9:

S100 calcium binding protein A9

scRNA-seq :

Single-cell RNA-sequencing

SIRPα:

Signal regulatory protein-α

Smad3:

Sma-and Mad-related protein 3

SPMs:

Specialized pro-resolving lipid mediators

STAT3:

Signal transducer and activator of transcription 3

STAT6:

Signal transducer and activator of transcription 6

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor α

TRPV2:

Transient receptor potential vanilloid 2

VEGFA:

Vascular endothelial growth factor A

VEGFC:

Vascular endothelial growth factor C

References

  1. Yan J, Horng T (2020) Lipid metabolism in regulation of macrophage functions. Trends Cell Biol 30:979–989. https://doi.org/10.1016/j.tcb.2020.09.006

    Article  CAS  PubMed  Google Scholar 

  2. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882. https://doi.org/10.1016/j.cell.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  3. Kain V, Halade GV (2015) Big eater macrophages dominate inflammation resolution following myocardial infarction. J Mol Cell Cardiol 87:225–227. https://doi.org/10.1016/j.yjmcc.2015.08.019

    Article  CAS  PubMed  Google Scholar 

  4. Horckmans M, Ring L, Duchene J et al (2017) Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J 38:187–197. https://doi.org/10.1093/eurheartj/ehw002

    Article  CAS  PubMed  Google Scholar 

  5. Frangogiannis NG (2014) The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 63:185–195. https://doi.org/10.1097/FJC.0000000000000003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lambert JM, Lopez EF, Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147–158. https://doi.org/10.1016/j.ijcard.2008.04.059

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heidt T, Courties G, Dutta P et al (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295. https://doi.org/10.1161/CIRCRESAHA.115.303567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinto AR, Ilinykh A, Ivey MJ et al (2016) Revisiting cardiac cellular composition. Circ Res 118:400–409. https://doi.org/10.1161/CIRCRESAHA.115.307778

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Mordechai T, Palevski D, Glucksam-Galnoy Y, Elron-Gross I, Margalit R, Leor J (2015) Targeting macrophage subsets for infarct repair. J Cardiovasc Pharmacol Ther 20:36–51. https://doi.org/10.1177/1074248414534916

    Article  PubMed  Google Scholar 

  10. Leuschner F, Nahrendorf M (2020) Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. Eur Heart J 41:989–994. https://doi.org/10.1093/eurheartj/ehz159

    Article  CAS  PubMed  Google Scholar 

  11. Epelman S, Lavine KJ, Beaudin AE et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104. https://doi.org/10.1016/j.immuni.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeBerge M, Yeap XY, Dehn S et al (2017) MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury. Circ Res 121:930–940. https://doi.org/10.1161/CIRCRESAHA.117.311327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bajpai G, Bredemeyer A, Li W et al (2019) Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 124:263–278. https://doi.org/10.1161/CIRCRESAHA.118.314028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dewald O, Zymek P, Winkelmann K et al (2005) CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96:881–889. https://doi.org/10.1161/01.RES.0000163017.13772.3a

    Article  CAS  PubMed  Google Scholar 

  15. Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M (2004) Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol 165:439–447. https://doi.org/10.1016/S0002-9440(10)63309-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung K, Kim P, Leuschner F et al (2013) Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 112:891–899. https://doi.org/10.1161/CIRCRESAHA.111.300484

    Article  CAS  PubMed  Google Scholar 

  17. Walter W, Alonso-Herranz L, Trappetti V et al (2018) Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep 23:622–636. https://doi.org/10.1016/j.celrep.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  18. Swirski FK, Robbins CS, Nahrendorf M (2016) Development and function of arterial and cardiac macrophages. Trends Immunol 37:32–40. https://doi.org/10.1016/j.it.2015.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peet C, Ivetic A, Bromage DI, Shah AM (2020) Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res 116:1101–1112. https://doi.org/10.1093/cvr/cvz336

    Article  CAS  PubMed  Google Scholar 

  20. Garcia RA, Ito BR, Lupisella JA et al (2019) Preservation of post-infarction cardiac structure and function via long-term oral formyl peptide receptor agonist treatment. JACC Basic Transl Sci 4:905–920. https://doi.org/10.1016/j.jacbts.2019.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun K, Li YY, Jin J (2021) A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 6:79. https://doi.org/10.1038/s41392-020-00455-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nd DMJ, Tenkorang-Impraim MAA, Ma Y et al (2020) Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. J Mol Cell Cardiol 145:112–121. https://doi.org/10.1016/j.yjmcc.2020.06.006

    Article  CAS  Google Scholar 

  23. Tourki B, Halade G (2017) Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. FASEB J 31:4226–4239. https://doi.org/10.1096/fj.201700109R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5:a8748. https://doi.org/10.1101/cshperspect.a008748

    Article  CAS  Google Scholar 

  25. Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189:1059–1070. https://doi.org/10.1083/jcb.201004096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishimoto Y, Ohashi K, Mizuno K, Nakano T (2000) Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J Biochem 127:411–417. https://doi.org/10.1093/oxfordjournals.jbchem.a022622

    Article  CAS  PubMed  Google Scholar 

  28. Seizer P, Schiemann S, Merz T et al (2010) CD36 and macrophage scavenger receptor a modulate foam cell formation via inhibition of lipid-laden platelet phagocytosis. Semin Thromb Hemost 36:157–162. https://doi.org/10.1055/s-0030-1251499

    Article  CAS  PubMed  Google Scholar 

  29. Rinne P, Guillamat-Prats R, Rami M et al (2018) Palmitoylethanolamide promotes a proresolving macrophage phenotype and attenuates atherosclerotic plaque formation. Arterioscler Thromb Vasc Biol 38:2562–2575. https://doi.org/10.1161/ATVBAHA.118.311185

    Article  CAS  PubMed  Google Scholar 

  30. Monaco C, Whitfield J, Jain SS, Spriet LL, Bonen A, Holloway GP (2015) Activation of AMPKalpha2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS ONE 10:e126122. https://doi.org/10.1371/journal.pone.0126122

    Article  CAS  Google Scholar 

  31. Talle MA, Rao PE, Westberg E et al (1983) Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell Immunol 78:83–99. https://doi.org/10.1016/0008-8749(83)90262-9

    Article  CAS  PubMed  Google Scholar 

  32. Fadok VA, Warner ML, Bratton DL, Henson PM (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 161:6250–6257

    Article  CAS  PubMed  Google Scholar 

  33. DeLeon-Pennell KY, Tian Y, Zhang B et al (2016) CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ Cardiovasc Genet 9:14–25. https://doi.org/10.1161/CIRCGENETICS.115.001249

    Article  CAS  PubMed  Google Scholar 

  34. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2:e3. https://doi.org/10.1126/scisignal.272re3

    Article  CAS  Google Scholar 

  35. Lindsey ML, Jung M, Yabluchanskiy A et al (2019) Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality. Cardiovasc Res 115:395–408. https://doi.org/10.1093/cvr/cvy211

    Article  CAS  PubMed  Google Scholar 

  36. Glinton KE, Ma W, Lantz C et al (2022) Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. J Clin Invest. https://doi.org/10.1172/JCI140685

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dehn S, Thorp EB (2018) Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J 32:254–264. https://doi.org/10.1096/fj.201700450R

    Article  CAS  PubMed  Google Scholar 

  38. Driscoll WS, Vaisar T, Tang J, Wilson CL, Raines EW (2013) Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ Res 113:52–61. https://doi.org/10.1161/CIRCRESAHA.112.300683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wan E, Yeap XY, Dehn S et al (2013) Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 113:1004–1012. https://doi.org/10.1161/CIRCRESAHA.113.301198

    Article  CAS  PubMed  Google Scholar 

  40. Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8:327–336. https://doi.org/10.1038/nri2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemke G (2019) How macrophages deal with death. Nat Rev Immunol 19:539–549. https://doi.org/10.1038/s41577-019-0167-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189:3508–3520. https://doi.org/10.4049/jimmunol.1200662

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S, Yeap XY, Grigoryeva L et al (2015) Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. J Mol Cell Cardiol 87:171–179. https://doi.org/10.1016/j.yjmcc.2015.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Couto G, Jaghatspanyan E, DeBerge M et al (2019) Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles. Arterioscler Thromb Vasc Biol 39:2082–2096. https://doi.org/10.1161/ATVBAHA.119.313115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanayama R, Tanaka M, Miyasaka K et al (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150. https://doi.org/10.1126/science.1094359

    Article  CAS  PubMed  Google Scholar 

  46. Nandrot EF, Anand M, Almeida D, Atabai K, Sheppard D, Finnemann SC (2007) Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis. Proc Natl Acad Sci USA 104:12005–12010. https://doi.org/10.1073/pnas.0704756104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Howangyin KY, Zlatanova I, Pinto C et al (2016) Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133:826–839. https://doi.org/10.1161/CIRCULATIONAHA.115.020857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thorp E, Vaisar T, Subramanian M, Mautner L, Blobel C, Tabas I (2011) Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cdelta, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 286:33335–33344. https://doi.org/10.1074/jbc.M111.263020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265. https://doi.org/10.1038/nrcardio.2014.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu L, Yang G, Zhang X et al (2018) Megakaryocytic Leukemia 1 bridges epigenetic activation of NADPH oxidase in macrophages to cardiac ischemia-reperfusion injury. Circulation 138:2820–2836. https://doi.org/10.1161/CIRCULATIONAHA.118.035377

    Article  CAS  PubMed  Google Scholar 

  51. Sather S, Kenyon KD, Lefkowitz JB et al (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109:1026–1033. https://doi.org/10.1182/blood-2006-05-021634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanna A, Frangogiannis NG (2020) Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther 34:849–863. https://doi.org/10.1007/s10557-020-07071-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. White GE, Iqbal AJ, Greaves DR (2013) CC chemokine receptors and chronic inflammation–therapeutic opportunities and pharmacological challenges. Pharmacol Rev 65:47–89. https://doi.org/10.1124/pr.111.005074

    Article  CAS  PubMed  Google Scholar 

  54. Xia Y, Frangogiannis NG (2007) MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy. Inflamm Allergy Drug Targets 6:101–107. https://doi.org/10.2174/187152807780832265

    Article  CAS  PubMed  Google Scholar 

  55. Frangogiannis NG (2004) Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 53:585–595. https://doi.org/10.1007/s00011-004-1298-5

    Article  CAS  PubMed  Google Scholar 

  56. Schack L, Stapulionis R, Christensen B et al (2009) Osteopontin enhances phagocytosis through a novel osteopontin receptor, the alphaXbeta2 integrin. J Immunol 182:6943–6950. https://doi.org/10.4049/jimmunol.0900065

    Article  CAS  PubMed  Google Scholar 

  57. Caberoy NB, Alvarado G, Bigcas JL, Li W (2012) Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol 227:401–407. https://doi.org/10.1002/jcp.22955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shirakawa K, Endo J, Kataoka M et al (2018) IL (Interleukin)-10-STAT3-Galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation 138:2021–2035. https://doi.org/10.1161/CIRCULATIONAHA.118.035047

    Article  CAS  PubMed  Google Scholar 

  59. Shirakawa K, Endo J, Kataoka M et al (2020) MerTK expression and ERK activation are essential for the functional maturation of osteopontin-producing reparative macrophages after myocardial infarction. J Am Heart Assoc 9:e17071. https://doi.org/10.1161/JAHA.120.017071

    Article  Google Scholar 

  60. Liu X, Chen J, Zhang B, Liu G, Zhao H, Hu Q (2019) KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell Signal 64:109415. https://doi.org/10.1016/j.cellsig.2019.109415

    Article  CAS  PubMed  Google Scholar 

  61. Gast M, Rauch BH, Haghikia A et al (2019) Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 115:1886–1906. https://doi.org/10.1093/cvr/cvz085

    Article  CAS  PubMed  Google Scholar 

  62. Chen B, Huang S, Su Y et al (2019) Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ Res 125:55–70. https://doi.org/10.1161/CIRCRESAHA.119.315069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Humeres C, Venugopal H, Frangogiannis NG (2022) Smad-dependent pathways in the infarcted and failing heart. Curr Opin Pharmacol 64:102207. https://doi.org/10.1016/j.coph.2022.102207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bujak M, Ren G, Kweon HJ et al (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116:2127–2138. https://doi.org/10.1161/CIRCULATIONAHA.107.704197

    Article  CAS  PubMed  Google Scholar 

  65. Dobaczewski M, Bujak M, Li N et al (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428. https://doi.org/10.1161/CIRCRESAHA.109.216101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kong P, Shinde AV, Su Y et al (2018) Opposing actions of fibroblast and cardiomyocyte Smad3 Signaling in the infarcted myocardium. Circulation 137:707–724. https://doi.org/10.1161/CIRCULATIONAHA.117.029622

    Article  CAS  PubMed  Google Scholar 

  67. Huang S, Chen B, Su Y et al (2019) Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. J Mol Cell Cardiol 132:84–97. https://doi.org/10.1016/j.yjmcc.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen B, Li R, Hernandez SC et al (2022) Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium. J Mol Cell Cardiol 171:1–15. https://doi.org/10.1016/j.yjmcc.2022.06.009

    Article  CAS  PubMed  Google Scholar 

  69. Humeres C, Shinde AV, Hanna A et al (2022) Smad7 effects on TGF-beta and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. https://doi.org/10.1172/JCI146926

    Article  PubMed  PubMed Central  Google Scholar 

  70. Giudice V, Wu Z, Kajigaya S et al (2019) Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic anemia and myelodysplastic syndromes. Cytokine 113:462–465. https://doi.org/10.1016/j.cyto.2018.06.025

    Article  CAS  PubMed  Google Scholar 

  71. Yi W, Zhu R, Hou X, Wu F, Feng R (2022) Integrated analysis reveals S100a8/a9 regulates autophagy and apoptosis through the MAPK and PI3K-AKT signaling pathway in the early stage of myocardial infarction. Cells. https://doi.org/10.3390/cells11121911

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lin ZL, Liu YC, Gao YL et al (2022) S100A9 and SOCS3 as diagnostic biomarkers of acute myocardial infarction and their association with immune infiltration. Genes Genet Syst 97:67–79. https://doi.org/10.1266/ggs.21-00073

    Article  CAS  PubMed  Google Scholar 

  73. Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37. https://doi.org/10.1189/jlb.0306170

    Article  CAS  PubMed  Google Scholar 

  74. Marinkovic G, Koenis DS, de Camp L et al (2020) S100A9 links inflammation and repair in myocardial infarction. Circ Res 127:664–676. https://doi.org/10.1161/CIRCRESAHA.120.315865

    Article  CAS  PubMed  Google Scholar 

  75. Marinkovic G, Grauen Larsen H, Yndigegn T et al (2019) Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. Eur Heart J 40:2713–2723. https://doi.org/10.1093/eurheartj/ehz461

    Article  CAS  PubMed  Google Scholar 

  76. Dall E, Brandstetter H (2016) Structure and function of legumain in health and disease. Biochimie 122:126–150. https://doi.org/10.1016/j.biochi.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  77. Jia D, Chen S, Bai P et al (2022) Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. Circulation 145:1542–1556. https://doi.org/10.1161/CIRCULATIONAHA.121.057549

    Article  CAS  PubMed  Google Scholar 

  78. Barnette DN, Cahill TJ, Gunadasa-Rohling M, Carr CA, Freeman M, Riley PR (2018) iRhom2-mediated proinflammatory signalling regulates heart repair following myocardial infarction. JCI Insight. https://doi.org/10.1172/jci.insight.98268

    Article  PubMed  PubMed Central  Google Scholar 

  79. Garcia RA, Lupisella JA, Ito BR et al (2021) Selective FPR2 agonism promotes a proresolution macrophage phenotype and improves cardiac structure-function post myocardial infarction. JACC Basic Transl Sci 6:676–689. https://doi.org/10.1016/j.jacbts.2021.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  80. Entin-Meer M, Levy R, Goryainov P et al (2014) The transient receptor potential vanilloid 2 cation channel is abundant in macrophages accumulating at the peri-infarct zone and may enhance their migration capacity towards injured cardiomyocytes following myocardial infarction. PLoS ONE 9:e105055. https://doi.org/10.1371/journal.pone.0105055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50. https://doi.org/10.1146/annurev-immunol-032713-120142

    Article  CAS  PubMed  Google Scholar 

  82. Tsai RK, Discher DE (2008) Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol 180:989–1003. https://doi.org/10.1083/jcb.200708043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang S, Yeap XY, DeBerge M et al (2017) Acute CD47 blockade during ischemic myocardial reperfusion enhances phagocytosis-associated cardiac repair. JACC Basic Transl Sci 2:386–397. https://doi.org/10.1016/j.jacbts.2017.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  84. Salio M, Chimenti S, De Angelis N et al (2008) Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation 117:1055–1064. https://doi.org/10.1161/CIRCULATIONAHA.107.749234

    Article  CAS  PubMed  Google Scholar 

  85. Maugeri N, Rovere-Querini P, Slavich M et al (2011) Early and transient release of leukocyte pentraxin 3 during acute myocardial infarction. J Immunol 187:970–979. https://doi.org/10.4049/jimmunol.1100261

    Article  CAS  PubMed  Google Scholar 

  86. Guo T, Ke L, Qi B et al (2012) PTX3 is located at the membrane of late apoptotic macrophages and mediates the phagocytosis of macrophages. J Clin Immunol 32:330–339. https://doi.org/10.1007/s10875-011-9615-6

    Article  CAS  PubMed  Google Scholar 

  87. Jaillon S, Jeannin P, HamonY, et al (2009) Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages. Cell Death Differ 16:465–474. https://doi.org/10.1038/cdd.2008.173

    Article  CAS  PubMed  Google Scholar 

  88. Shiraki A, Kotooka N, Komoda H, Hirase T, Oyama JI, Node K (2016) Pentraxin-3 regulates the inflammatory activity of macrophages. Biochem Biophys Rep 5:290–295. https://doi.org/10.1016/j.bbrep.2016.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  89. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. https://doi.org/10.3390/cells8070727

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  91. Wysoczynski M, Khan A, Bolli R (2018) New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res 123:138–158. https://doi.org/10.1161/CIRCRESAHA.118.313251

    Article  CAS  PubMed  Google Scholar 

  92. Mentkowski KI, Mursleen A, Snitzer JD, Euscher LM, Lang JK (2020) CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. Am J Physiol Heart Circ Physiol 318:H1447–H1460. https://doi.org/10.1152/ajpheart.00155.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Couto G, Gallet R, Cambier L et al (2017) Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation 136:200–214. https://doi.org/10.1161/CIRCULATIONAHA.116.024590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Patil M, Saheera S, Dubey PK et al (2021) Novel mechanisms of exosome-mediated phagocytosis of dead cells in injured heart. Circ Res 129:1006–1020. https://doi.org/10.1161/CIRCRESAHA.120.317900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun S, Wu Y, Maimaitijiang A, Huang Q, Chen Q (2022) Ferroptotic cardiomyocyte-derived exosomes promote cardiac macrophage M1 polarization during myocardial infarction. PeerJ 10:e13717. https://doi.org/10.7717/peerj.13717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng C, Sui B, Zhang X et al (2021) Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles 10:e12109. https://doi.org/10.1002/jev2.12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thorp EB (2012) Contrasting inflammation resolution during atherosclerosis and post myocardial infarction at the level of monocyte/macrophage phagocytic clearance. Front Immunol 3:39. https://doi.org/10.3389/fimmu.2012.00039

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ma Y, Yabluchanskiy A, Iyer RP et al (2016) Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res 110:51–61. https://doi.org/10.1093/cvr/cvw024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sreejit G, Abdel-Latif A, Athmanathan B et al (2020) Neutrophil-derived S100A8/A9 amplify Granulopoiesis after myocardial infarction. Circulation 41:1080–1094. https://doi.org/10.1161/CIRCULATIONAHA.119.043833

    Article  CAS  Google Scholar 

  100. Daseke MJ II, Chalise U, Becirovic-Agic M et al (2021) Neutrophil signaling during myocardial infarction wound repair. Cell Signal 77:109816. https://doi.org/10.1016/j.cellsig.2020.109816

    Article  CAS  PubMed  Google Scholar 

  101. Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016303

    Article  PubMed  PubMed Central  Google Scholar 

  102. Daseke MJ, Valerio FM, Kalusche WJ, Ma Y, DeLeon-Pennell KY, Lindsey ML (2019) Neutrophil proteome shifts over the myocardial infarction time continuum. Basic Res Cardiol 114:37. https://doi.org/10.1007/s00395-019-0746-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ho HK, Jang JJ, Kaji S et al (2004) Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia. Circulation 109:1314–1319. https://doi.org/10.1161/01.CIR.0000118465.36018.2D

    Article  CAS  PubMed  Google Scholar 

  104. Wei X, Zou S, Xie Z et al (2022) EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps (NET)-mediated macrophage polarization. Cardiovasc Res 118:2179–2195. https://doi.org/10.1093/cvr/cvab269

    Article  CAS  PubMed  Google Scholar 

  105. Fredman G, Spite M (2017) Specialized pro-resolving mediators in cardiovascular diseases. Mol Aspects Med 58:65–71. https://doi.org/10.1016/j.mam.2017.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kain V, Ingle KA, Colas RA et al (2015) Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J Mol Cell Cardiol 84:24–35. https://doi.org/10.1016/j.yjmcc.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chiang N, Serhan CN (2017) Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 58:114–129. https://doi.org/10.1016/j.mam.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Freire-de-Lima CG, Xiao YQ, Gardai SJ, Bratton DL, Schiemann WP, Henson PM (2006) Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem 281:38376–38384. https://doi.org/10.1074/jbc.M605146200

    Article  CAS  PubMed  Google Scholar 

  109. Dalli J, Serhan CN (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120:e60–e72. https://doi.org/10.1182/blood-2012-04-423525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schmid M, Gemperle C, Rimann N, Hersberger M (2016) Resolvin D1 polarizes primary human macrophages toward a proresolution phenotype through GPR32. J Immunol 196:3429–3437. https://doi.org/10.4049/jimmunol.1501701

    Article  CAS  PubMed  Google Scholar 

  111. Cai B, Thorp EB, Doran AC et al (2016) MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc Natl Acad Sci USA 113:6526–6531. https://doi.org/10.1073/pnas.1524292113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vago JP, Amaral FA, van de Loo FAJ (2021) Resolving inflammation by TAM receptor activation. Pharmacol Ther 227:107893. https://doi.org/10.1016/j.pharmthera.2021.107893

    Article  CAS  PubMed  Google Scholar 

  113. Rymut N, Heinz J, Sadhu S et al (2020) Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J 34:597–609. https://doi.org/10.1096/fj.201902126R

    Article  CAS  PubMed  Google Scholar 

  114. Park M, Shen YT, Gaussin V et al (2009) Apoptosis predominates in nonmyocytes in heart failure. Am J Physiol Heart Circ Physiol 297:H785–H791. https://doi.org/10.1152/ajpheart.00310.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weinberger T, Rauber S, Schneider V et al (2021) Differential MHC-II expression and phagocytic functions of embryo-derived cardiac macrophages in the course of myocardial infarction in mice. Eur J Immunol 51:250–252. https://doi.org/10.1002/eji.202048560

    Article  CAS  PubMed  Google Scholar 

  116. Leblond AL, Klinkert K, Martin K et al (2015) Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS ONE 10:e137515. https://doi.org/10.1371/journal.pone.0137515

    Article  CAS  Google Scholar 

  117. Shiraishi M, Shintani Y, Shintani Y et al (2016) Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 126:2151–2166. https://doi.org/10.1172/JCI85782

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ma Y, Halade GV, Zhang J et al (2013) Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Circ Res 112:675–688. https://doi.org/10.1161/CIRCRESAHA.111.300502

    Article  CAS  PubMed  Google Scholar 

  119. Kubota A, Frangogiannis NG (2022) Macrophages in myocardial infarction. Am J Physiol Cell Physiol 323:C1304–C1324. https://doi.org/10.1152/ajpcell.00230.2022

    Article  CAS  PubMed  Google Scholar 

  120. DeBerge M, Zhang S, Glinton K et al (2017) Efferocytosis and outside-in signaling by cardiac phagocytes. Links to repair, cellular programming, and intercellular crosstalk in heart. Front Immunol 8:1428. https://doi.org/10.3389/fimmu.2017.01428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. DeBerge M, Glinton K, Subramanian M et al (2021) Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction. J Clin Invest. https://doi.org/10.1172/JCI139576

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82074053, 81930114, U22A20368), Scientific Program of Traditional Chinese Medicine Bureau of Guangdong Province (20231101), Key-Area Research and Development Program of Guangdong Province (No. 2020B1111100004), University Research Program of Guangdong Provincial Department Education (2021ZDZX1010), the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund (Guangdong-Hong Kong-Macau Joint Lab, 2020B1212030006).

Author information

Authors and Affiliations

Authors

Contributions

Jiahua Li and Qi Chen: writing—original draft preparation. Rong Zhang: manuscript revision. Zhongqiu Liu and Yuanyuan Cheng: manuscript design, supervision and revision.

Corresponding authors

Correspondence to Zhongqiu Liu or Yuanyuan Cheng.

Ethics declarations

Ethics approval

No human and/ or animal subjects were contained when summarizing this review article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, Q., Zhang, R. et al. The phagocytic role of macrophage following myocardial infarction. Heart Fail Rev 28, 993–1007 (2023). https://doi.org/10.1007/s10741-023-10314-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10314-5

Keywords

Navigation