Skip to main content

Advertisement

Log in

Cellular Immunity and Cardiac Remodeling After Myocardial Infarction: Role of Neutrophils, Monocytes, and Macrophages

  • Comorbidities of Heart Failure (CE Angermann, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Today, innate immunity is recognized as an important pathophysiologic factor and therapeutic target for cardiac remodeling after myocardial infarction (MI). The innate immune system exerts its function via soluble and cellular components. Recently, function and kinetics of immune cells after MI have been clarified using new innovative technology. Therefore, herein, we will discuss the function of neutrophils, monocytes, and macrophages in the pathophysiology of cardiac remodeling after MI in basic as well as clinical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hofmann U, Frantz S. How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol. 2013;108:356. doi:10.1007/s00395-013-0356-y.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594–602.

    Article  CAS  PubMed  Google Scholar 

  3. Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102:240–8. doi:10.1093/cvr/cvu025. This review summarized macrophage fate and function in steady status and ischemic heart diseases including interactions with other organs.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair. 2013;6:11. doi:10.1186/1755-1536-6-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Di Filippo C, Rossi F, D’Amico M. Targeting polymorphonuclear leukocytes in acute myocardial infarction. Sci World J. 2007;7:121–34.

    Article  Google Scholar 

  6. Akpek M, Kaya MG, Lam YY, Sahin O, Elcik D, Celik T, et al. Relation of neutrophil/lymphocyte ratio to coronary flow to in-hospital major adverse cardiac events in patients with ST-elevated myocardial infarction undergoing primary coronary intervention. Am J Cardiol. 2012;6:621–7. doi:10.1016/j.amjcard.2012.04.041.

    Article  Google Scholar 

  7. Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR. Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J. 1986;112:682–90. doi:10.1016/0002-8703(86)90461-8.

    Article  CAS  PubMed  Google Scholar 

  8. Frantz A, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2009;81:474–81. doi:10.1093/cvr/cvn292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP. The innate immune response in reperfused myocardium. Cardiovasc Res. 2012;94:276–83. doi:10.1093/cvr/cvs018.

    Article  CAS  PubMed  Google Scholar 

  10. Prince LR, Whyte MK, Sabroe I, Parker LC. The role of TLRs in neutrophil activation. Curr Opin Pharmacol. 2011;11:397–403. doi:10.1016/j.coph.2011.06.007.

    Article  CAS  PubMed  Google Scholar 

  11. Oyama J, Blais Jr C, Liu X, Pu M, Kobzik L, Kelly RA, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 2004;109:784–9.

    Article  CAS  PubMed  Google Scholar 

  12. Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation. 2010;121:80–90.

    Article  CAS  PubMed  Google Scholar 

  13. Mann DL. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res. 2011;108:133–1145.

    Article  Google Scholar 

  14. Rossen RD, Michael LH, Hawkins HK, Youker K, Dreyer WJ, Baughn RE, et al. Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion. Circ Res. 1994;75:546–55.

    Article  CAS  PubMed  Google Scholar 

  15. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462:99–103. doi:10.1038/nature08512.

    Article  CAS  PubMed  Google Scholar 

  16. Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med. 2004;170:1310–6.

    Article  PubMed  Google Scholar 

  17. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110:159–73. doi:10.1161/CIRCRESAHA.111.243162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58:88–111. doi:10.1016/j.phrs.2008.06.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ma XL, Weyrich AS, Lefer DJ, Buerke M, Albertine KH, Kishimoto TK, et al. Monoclonal antibody to L-selectin attenuates neutrophil accumulation and protects ischemic reperfused cat myocardium. Circulation. 1993;88:649–58.

    Article  CAS  PubMed  Google Scholar 

  20. Kubes P, Jutila M, Payne D. Therapeutic potential of inhibiting leukocyte rolling in ischemia/reperfusion. J Clin Invest. 1995;95:2510–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Briaud SA, Ding ZM, Michael LH, Entman ML, Daniel S, Ballantyne CM. Leukocyte trafficking and myocardial reperfusion injury in ICAM-1/P-selectin-knockout mice. Am J Physiol Heart Circ Physiol. 2001;280:H60–7.

    CAS  PubMed  Google Scholar 

  22. Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F, HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol. 2002;40:1199–204.

    Article  CAS  PubMed  Google Scholar 

  23. Perez RG, Arai M, Richardson C, DiPaula A, Siu C, Matsumoto N, et al. Factors modifying protective effect of anti-CD18 antibodies on myocardial reperfusion injury in dogs. Am J Physiol. 1996;270(1 Pt 2):H53–64.

    CAS  PubMed  Google Scholar 

  24. Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxidative Med Cell Longev. 2012;2012:181295. doi:10.1155/2012/181295.

    Article  Google Scholar 

  25. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89. doi:10.1146/annurev-immunol-020711-074942.

    Article  CAS  PubMed  Google Scholar 

  26. Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med. 2007;43:271–81.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y. Reactive oxygen species promote angiogenesis in the infarcted rat heart. Int J Exp Pathol. 2009;90:621–9. doi:10.1111/j.1365-2613.2009.00682.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mocatta TJ, Pilbrow AP, Cameron VA, Senthilmohan R, Frampton CM, Richards AM, et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol. 2007;49:1993–2000.

    Article  CAS  PubMed  Google Scholar 

  29. Afshar-Kharghan V, Thiagarajan P. Leukocyte adhesion and thrombosis. Curr Opin Hematol. 2006;13:34–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ng LL, Khan SQ, Narayan H, Quinn P, Squire IB, Davies JE. Proteinase 3 and prognosis of patients with acute myocardial infarction. Clin Sci (Lond). 2011;120:231–8. doi:10.1042/CS20100366.

    CAS  Google Scholar 

  31. van den Borne SW, Cleutjens JP, Hanemaaijer R, Creemers EE, Smits JF, Daemen MJ, et al. Increased matrix metalloproteinase-8 and −9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol. 2009;18:37–43. doi:10.1016/j.carpath.2007.12.012.

    Article  PubMed  Google Scholar 

  32. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;290:H232–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zamilpa R, Ibarra J, de Castro Brás LE, Ramirez TA, Nguyen N, Halade GV, et al. Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J Mol Cell Cardiol. 2012;53:599–608. doi:10.1016/j.yjmcc.2012.07.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res. 2000;87:378–84.

    Article  CAS  PubMed  Google Scholar 

  36. Cooper PR, Palmer LJ, Chapple IL. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol. 2013;63:165–97. doi:10.1111/prd.12025.

    Article  Google Scholar 

  37. de Boer OJ, Li X, Teeling P, Mackaay C, Ploegmakers HJ, van der Loos CM, et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost. 2013;109:290–7. doi:10.1160/TH12-06-0425.

    Article  PubMed  Google Scholar 

  38. Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123:141–8. doi:10.1182/blood-2013-07-514992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12:2074–88. doi:10.1111/jth.12710.

    Article  CAS  PubMed  Google Scholar 

  40. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 2010;10:427–39. doi:10.1038/nri2779.

    Article  CAS  PubMed  Google Scholar 

  41. Huang M, Yang D, Xiang M, Wang J. Role of interleukin-6 in regulation of immune responses to remodeling after myocardial infarction. Heart Fail Rev. 2015;20:25–38. doi:10.1007/s10741-014-9431-1.

    Article  CAS  PubMed  Google Scholar 

  42. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity. 2005;22:285–94.

    Article  CAS  PubMed  Google Scholar 

  43. Ley K, Smith E, Stark MA. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res. 2006;34:229–42.

    Article  CAS  PubMed  Google Scholar 

  44. Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011;32:350–7. doi:10.1016/j.it.2011.04.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem. 1997;272:6972–8.

    Article  CAS  PubMed  Google Scholar 

  46. Novack V, Pencina M, Zahger D, Fuchs L, Nevzorov R, Jotkowitz A, et al. Routine laboratory results and thirty day and one-year mortality risk following hospitalization with acute decompensated heart failure. PLoS ONE. 2010;5:e12184. doi:10.1371/journal.pone.0012184.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Cooper HA, Exner DV, Waclawiw MA, Domanski MJ. White blood cell count and mortality in patients with ischemic and nonischemic left ventricular systolic dysfunction (an analysis of the studies of left ventricular dysfunction [SOLVD]). Am J Cardiol. 1999;84:252–7.

    Article  CAS  PubMed  Google Scholar 

  48. Arruda-Olson AM, Reeder GS, Bell MR, Weston SA, Roger VL. Neutrophilia predicts death and heart failure after myocardial infarction: a community-based study. Circ Cardiovasc Qual Outcomes. 2009;2:656–62. doi:10.1161/CIRCOUTCOMES.108.831024.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Rashidi F, Rashidi A, Golmohamadi A, Hoseinzadeh E, Mohammadi B, Mirzajani H, et al. Does absolute neutrophilia predict early congestive heart failure after acute myocardial infarction? A cross-sectional study. South Med J. 2008;101:19–23. doi:10.1097/SMJ.0b013e31815d3e11.

    Article  PubMed  Google Scholar 

  50. Uthamalingam S, Patvardhan EA, Subramanian S, Ahmed W, Martin W, Daley M, et al. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure. Am J Cardiol. 2011;107:433–8. doi:10.1016/j.amjcard.2010.09.039.

    Article  PubMed  Google Scholar 

  51. Yıldız A, Yüksel M, Oylumlu M, Polat N, Akıl MA, Acet H. The association between the neutrophil/lymphocyte ratio and functional capacity in patients with idiopathic dilated cardiomyopathy. Anadolu Kardiyol Derg. 2014. doi:10.5152/akd.2014.5131.

    Google Scholar 

  52. Avci A, Alizade E, Fidan S, Yesin M, Guler Y, Kargin R, et al. Neutrophil/lymphocyte ratio is related to the severity of idiopathic dilated cardiomyopathy. Scand Cardiovasc J. 2014;48:202–8. doi:10.3109/14017431.2014.932922.

    Article  CAS  PubMed  Google Scholar 

  53. von Haehling S, Schefold JC, Jankowska E, Doehner W, Springer J, Strohschein K, et al. Leukocyte redistribution: effects of beta blockers in patients with chronic heart failure. PLoS One. 2009;4:e6411. doi:10.1371/journal.pone.0006411.

    Article  Google Scholar 

  54. Vaduganathan M, Greene SJ, Butler J, Sabbah HN, Shantsila E, Lip GY, et al. The immunological axis in heart failure: importance of the leukocyte differential. Heart Fail Rev. 2013;18:835–45. doi:10.1007/s10741-012-9352-9.

    Article  CAS  PubMed  Google Scholar 

  55. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    CAS  PubMed  Google Scholar 

  56. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  57. Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013;112:891–9. doi:10.1161/CIRCRESAHA.111.300484.

    Article  CAS  PubMed  Google Scholar 

  58. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204:3037–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N, et al. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J Immunol. 2013;191:4838–48. doi:10.4049/jimmunol.1300725.

    Article  CAS  PubMed  Google Scholar 

  60. Nahrendorf M, Swirski FK. Monocyte and macrophage heterogeneity in the heart. Circ Res. 2013;112:1624–33. doi:10.1161/CIRCRESAHA.113.300890.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. van der Laan AM, Ter Horst EN, Delewi R, Begieneman MP, Krijnen PA, Hirsch A, et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur Heart J. 2014;35:376–85. doi:10.1093/eurheartj/eht331.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96:881–9.

    Article  CAS  PubMed  Google Scholar 

  63. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63. doi:10.1016/j.jacc.2011.08.066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, et al. Impaired infarct healing in atherosclerotic mice with Ly-6Chi monocytosis. J Am Coll Cardiol. 2010;55:1629–38. doi:10.1016/j.jacc.2009.08.089.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127:2038–46. doi:10.1161/CIRCULATIONAHA.112.000116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54:130–8. doi:10.1016/j.jacc.2009.04.021.

    Article  PubMed  Google Scholar 

  67. Frantz S, Hofmann U, Fraccarollo D, Schäfer A, Kranepuhl S, Hagedorn I, et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27:871–81. doi:10.1096/fj.12-214049.

    Article  CAS  PubMed  Google Scholar 

  68. Courties G, Heidt T, Sebas M, Iwamoto Y, Jeon D, Truelove J, et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol. 2014;63:1556–66. doi:10.1016/j.jacc.2013.11.023. siRNA was used to silence IRF5 in macrophages and successfully manipulated polarization towards a M2 phenotype attenuating post MI remodeling.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115:55–67. doi:10.1161/CIRCRESAHA.115.303895.

    Article  CAS  PubMed  Google Scholar 

  70. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39:241–6.

    Article  PubMed  Google Scholar 

  71. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121:2437–45. doi:10.1161/CIRCULATIONAHA.109.916346.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–6. doi:10.1126/science.1175202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107:1364–73. doi:10.1161/CIRCRESAHA.110.227454.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012;209:123–37. doi:10.1084/jem.20111009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487:325–9. doi:10.1038/nature11260.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res. 2014;114:266–82. doi:10.1161/CIRCRESAHA.113.301720. This is the first article to demonstrate that the spleen regulates both chronic inflammation and the progression of pathological LV remodeling.

    Article  CAS  PubMed  Google Scholar 

  77. Alam SR, Shah AS, Richards J, Lang NN, Barnes G, Joshi N, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5:559–65.

    Article  PubMed  Google Scholar 

  78. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J. 2013;34:462–75. doi:10.1093/eurheartj/ehs366.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Hisahito Shinagawa declares that he has no conflict of interest. Stefan Frantz has received financial support through a grant from the Federal Ministry of Education and Research (BMBF).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Frantz.

Additional information

This article is part of the Topical Collection on Comorbidities of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinagawa, H., Frantz, S. Cellular Immunity and Cardiac Remodeling After Myocardial Infarction: Role of Neutrophils, Monocytes, and Macrophages. Curr Heart Fail Rep 12, 247–254 (2015). https://doi.org/10.1007/s11897-015-0255-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-015-0255-7

Keywords

Navigation