Tomasoni D, Adamo M, Lombardi CM, Metra M (2019) Highlights in heart failure. ESC Heart Fail 6(6):1105–1127. https://doi.org/10.1002/ehf2.12555
Article
PubMed
Google Scholar
Schwinger RHG (2021) Pathophysiology of heart failure. Cardiovasc Diagn Ther 11(1):263–276. https://doi.org/10.21037/cdt-20-302
Article
PubMed
PubMed Central
Google Scholar
Oren O, Goldberg S (2017) Heart failure with preserved ejection fraction diagnosis and management. Am J Med 130(5):510–516
Article
Google Scholar
Xanthopoulos A, Triposkiadis F, Starling RC (2018) Heart failure with preserved ejection fraction: classification based upon phenotype is essential for diagnosis and treatment. Trends Cardiovasc Med 28(6):392–400. https://doi.org/10.1016/j.tcm.2018.01.001
Article
PubMed
Google Scholar
Mohammed SF, Majure DT, Redfield MM (2016) Zooming in on the microvasculature in heart failure with preserved ejection fraction. Circ Heart Fail 9(7). https://doi.org/10.1161/CIRCHEARTFAILURE.116.003272
Milicic D, Jakus N, Fabijanovic D (2018) Microcirculation and Heart Failure. Curr Pharm Des 24(25):2954–2959. https://doi.org/10.2174/1381612824666180625143232
CAS
Article
PubMed
Google Scholar
Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D et al (2017) Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res 45(6):1901–1929. https://doi.org/10.1177/0300060516675504
Article
PubMed
PubMed Central
Google Scholar
Guarini G, Giuseppina Capozza P, Huqi A, Morrone D, M Chilian W, Marzilli M (2013) Microvascular function/dysfunction downstream a coronary stenosis. Curr Pharm Des 19(13):2366-74
Vancheri F, Longo G, Vancheri S, Henein M (2020) Coronary microvascular dysfunction. J Clin Med 9(9). https://doi.org/10.3390/jcm9092880
Chen C, Wei J, AlBadri A, Zarrini P, Bairey Merz CN (2016) Coronary microvascular dysfunction- epidemiology, pathogenesis, prognosis, diagnosis, risk factors and therapy. Circ J 81(1):3–11. https://doi.org/10.1253/circj.CJ-16-1002
Article
PubMed
PubMed Central
Google Scholar
Camici PG, Tschope C, Di Carli MF, Rimoldi O, Van Linthout S (2020) Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res 116(4):806–816. https://doi.org/10.1093/cvr/cvaa023
CAS
Article
PubMed
Google Scholar
Dryer K, Gajjar M, Narang N, Lee M, Paul J, Shah AP et al (2018) Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 314(5):H1033–H1042. https://doi.org/10.1152/ajpheart.00680.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39(37):3439–3450. https://doi.org/10.1093/eurheartj/ehy531
CAS
Article
PubMed
PubMed Central
Google Scholar
Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT et al (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39(10):840–849. https://doi.org/10.1093/eurheartj/ehx721
CAS
Article
PubMed
Google Scholar
Xanthopoulos A, Dimos A, Giamouzis G, Bourazana A, Zagouras A, Papamichalis M et al (2020) Coexisting morbidities in heart failure: no robust interaction with the left ventricular ejection fraction. Curr Heart Fail Rep 17(4):133–144. https://doi.org/10.1007/s11897-020-00461-3
Article
PubMed
Google Scholar
Wei J, Nelson MD, Sharif B, Shufelt C, Bairey Merz CN (2018) Why do we care about coronary microvascular dysfunction and heart failure with preserved ejection fraction: addressing knowledge gaps for evidence-based guidelines. Eur Heart J 39(37):3451–3453. https://doi.org/10.1093/eurheartj/ehy558
Article
PubMed
PubMed Central
Google Scholar
D’Amario D, Migliaro S, Borovac JA, Restivo A, Vergallo R, Galli M et al (2019) Microvascular dysfunction in heart failure with preserved ejection fraction. Front Physiol 10:1347. https://doi.org/10.3389/fphys.2019.01347
Article
PubMed
PubMed Central
Google Scholar
Liu BH, Li YG, Liu JX, Zhao XJ, Jia Q, Liu CL et al (2019) Assessing inflammation in Chinese subjects with subtypes of heart failure: an observational study of the Chinese PLA Hospital Heart Failure Registry. J Geriatr Cardiol 16(4):313–319. https://doi.org/10.11909/j.issn.1671-5411.2019.04.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Hage C, Michaelsson E, Linde C, Donal E, Daubert JC, Gan LM et al (2017) Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction: a holistic proteomic approach. Circ Cardiovasc Genet 10(1). https://doi.org/10.1161/CIRCGENETICS.116.001633
Tona F, Serra R, Di Ascenzo L, Osto E, Scarda A, Fabris R et al (2014) Systemic inflammation is related to coronary microvascular dysfunction in obese patients without obstructive coronary disease. Nutr Metab Cardiovasc Dis 24(4):447–453. https://doi.org/10.1016/j.numecd.2013.09.021
CAS
Article
PubMed
Google Scholar
van Heerebeek L, Paulus WJ (2016) Understanding heart failure with preserved ejection fraction: where are we today?. Neth Heart J 24(4):227–236. https://doi.org/10.1007/s12471-016-0810-1
Article
PubMed
PubMed Central
Google Scholar
Vasiljevic Z, Krljanac G, Zdravkovic M, Lasica R, Trifunovic D, Asanin M (2018) Coronary microcirculation in heart failure with preserved systolic function. Curr Pharm Des 24(25):2960–2966. https://doi.org/10.2174/1381612824666180711124131
CAS
Article
PubMed
Google Scholar
Triposkiadis F, Giamouzis G, Parissis J, Starling RC, Boudoulas H, Skoularigis J et al (2016) Reframing the association and significance of co-morbidities in heart failure. Eur J Heart Fail 18(7):744–758. https://doi.org/10.1002/ejhf.600
Article
PubMed
Google Scholar
Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM et al (2011) Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the I-PRESERVE trial. Circ Heart Fail 4(3):324–331
Article
Google Scholar
Quercioli A, Pataky Z, Montecucco F, Carballo S, Thomas A, Staub C et al (2012) Coronary vasomotor control in obesity and morbid obesity: contrasting flow responses with endocannabinoids, leptin, and inflammation. JACC Cardiovasc Imaging 5(8):805–815. https://doi.org/10.1016/j.jcmg.2012.01.020
Article
PubMed
Google Scholar
Campbell DJ, Somaratne JB, Prior DL, Yii M, Kenny JF, Newcomb AE et al (2013) Obesity is associated with lower coronary microvascular density. PLoS One 8(11):e81798. https://doi.org/10.1371/journal.pone.0081798
CAS
Article
PubMed
PubMed Central
Google Scholar
Jaiswal A, Nguyen VQ, Carry BJ, le Jemtel TH (2016) Pharmacologic and endovascular reversal of left ventricular remodeling. J Card Fail 22(10):829–839. https://doi.org/10.1016/j.cardfail.2016.03.017
CAS
Article
PubMed
Google Scholar
Zhao W, Zhao J, Rong J (2020) Pharmacological modulation of cardiac remodeling after myocardial infarction. Oxid Med Cell Longev 2020:8815349. https://doi.org/10.1155/2020/8815349
CAS
Article
PubMed
PubMed Central
Google Scholar
Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 65:70–99. https://doi.org/10.1016/j.mam.2018.07.001
CAS
Article
PubMed
Google Scholar
Li Y, Liang Y, Zhu Y, Zhang Y, Bei Y (2018) Noncoding RNAs in cardiac hypertrophy. J Cardiovasc Transl Res 11(6):439–449. https://doi.org/10.1007/s12265-018-9797-x
Article
PubMed
Google Scholar
Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092
Article
PubMed
Google Scholar
Koller A, Szenasi A, Dornyei G, Kovacs N, Lelbach A, Kovacs I (2018) Coronary microvascular and cardiac dysfunction due to homocysteine pathometabolism; a complex therapeutic design. Curr Pharm Des 24(25):2911–2920. https://doi.org/10.2174/1381612824666180625125450
CAS
Article
PubMed
Google Scholar
Kitabata H, Kubo T, Ishibashi K, Komukai K, Tanimoto T, Ino Y et al (2013) Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 6(10):1046–1054. https://doi.org/10.1016/j.jcin.2013.05.014
Article
PubMed
Google Scholar
Cheng R, Wei G, Yu L, Su Z, Wei L, Bai X et al (2014) Coronary flow reserve in the remote myocardium predicts left ventricular remodeling following acute myocardial infarction. Yonsei Med J 55(4):904–911. https://doi.org/10.3349/ymj.2014.55.4.904
Article
PubMed
PubMed Central
Google Scholar
Gulati A, Ismail TF, Ali A, Hsu LY, Goncalves C, Ismail NA et al (2019) Microvascular dysfunction in dilated cardiomyopathy: a quantitative stress perfusion cardiovascular magnetic resonance study. JACC Cardiovasc Imaging 12(8 Pt 2):1699–1708. https://doi.org/10.1016/j.jcmg.2018.10.032
Article
PubMed
PubMed Central
Google Scholar
Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H (2021) Coronary microvascular dysfunction. Arterioscler Thromb Vasc Biol 41(5):1625–1637. https://doi.org/10.1161/ATVBAHA.121.316025
CAS
Article
PubMed
Google Scholar
Deng J (2021) Research progress on the molecular mechanism of coronary microvascular endothelial cell dysfunction. Int J Cardiol Heart Vasc 34:100777. https://doi.org/10.1016/j.ijcha.2021.100777
Article
PubMed
PubMed Central
Google Scholar
Crea F, Camici PG, Bairey Merz CN (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35(17):1101–1111. https://doi.org/10.1093/eurheartj/eht513
Article
PubMed
Google Scholar
Marinescu MA, Loffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM (2015) Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging 8(2):210–220. https://doi.org/10.1016/j.jcmg.2014.12.008
Article
PubMed
PubMed Central
Google Scholar
Lindemann H, Petrovic I, Hill S, Athanasiadis A, Mahrholdt H, Schaufele T et al (2018) Biopsy-confirmed endothelial cell activation in patients with coronary microvascular dysfunction. Coron Artery Dis 29(3):216–222. https://doi.org/10.1097/MCA.0000000000000599
Article
PubMed
Google Scholar
Li Y, Zhang H, Liang Y, Wang W, Xu T, Zhang J et al (2018) Effects of hyperbaric oxygen on vascular endothelial function in patients with slow coronary flow. Cardiol J 25(1):106–112. https://doi.org/10.5603/CJ.a2017.0132
Article
PubMed
Google Scholar
Ohura-Kajitani S, Shiroto T, Godo S, Ikumi Y, Ito A, Tanaka S et al (2020) Marked impairment of endothelium-dependent digital vasodilatations in patients with microvascular angina: evidence for systemic small artery disease. Arterioscler Thromb Vasc Biol 40(5):1400–1412. https://doi.org/10.1161/ATVBAHA.119.313704
CAS
Article
PubMed
Google Scholar
Wang D, Luo P, Wang Y, Li W, Wang C, Sun D et al (2013) Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes 62(5):1697–1708. https://doi.org/10.2337/db12-1025
CAS
Article
PubMed
PubMed Central
Google Scholar
He X, Zeng H, Chen ST, Roman RJ, Aschner JL, Didion S et al (2017) Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol 112:104–113. https://doi.org/10.1016/j.yjmcc.2017.09.007
CAS
Article
PubMed
PubMed Central
Google Scholar
Lin J, Zhang L, Zhang M, Hu J, Wang T, Duan Y et al (2016) Mst1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction. Sci Rep 6:34199. https://doi.org/10.1038/srep34199
CAS
Article
PubMed
PubMed Central
Google Scholar
Segers VFM, Brutsaert DL, De Keulenaer GW (2018) Cardiac remodeling: endothelial cells have more to say than just NO. Front Physiol 9:382. https://doi.org/10.3389/fphys.2018.00382
Article
PubMed
PubMed Central
Google Scholar
Li Z, Zhang Y, Zhang Y, Yu L, Xiao B, Li T et al (2020) BRG1 Stimulates endothelial derived alarmin MRP8 to promote macrophage infiltration in an animal model of cardiac hypertrophy. Front Cell Dev Biol 8:569. https://doi.org/10.3389/fcell.2020.00569
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu X, Wu J, Zhu C, Liu J, Chen X, Zhuang T et al (2020) Endothelial S1pr1 regulates pressure overload-induced cardiac remodelling through AKT-eNOS pathway. J Cell Mol Med 24(2):2013–2026. https://doi.org/10.1111/jcmm.14900
CAS
Article
PubMed
Google Scholar
Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschope C et al (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 4(4):312–324. https://doi.org/10.1016/j.jchf.2015.10.007
Article
PubMed
Google Scholar
Yu L, Yang G, Weng X, Liang P, Li L, Li J et al (2015) Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice. Arterioscler Thromb Vasc Biol 35(5):1207–1217. https://doi.org/10.1161/ATVBAHA.115.305230
CAS
Article
PubMed
Google Scholar
Liu J, Zhuang T, Pi J, Chen X, Zhang Q, Li Y et al (2019) Endothelial Forkhead Box transcription factor P1 regulates pathological cardiac remodeling through transforming growth factor-beta1-endothelin-1 signal pathway. Circulation 140(8):665–680. https://doi.org/10.1161/CIRCULATIONAHA.119.039767
CAS
Article
PubMed
Google Scholar
Adiarto S, Heiden S, Vignon-Zellweger N, Nakayama K, Yagi K, Yanagisawa M et al (2012) ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci 91(13–14):651–657. https://doi.org/10.1016/j.lfs.2012.02.006
CAS
Article
PubMed
Google Scholar
Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y et al (2015) Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol 80:23–33. https://doi.org/10.1016/j.yjmcc.2014.11.009
CAS
Article
PubMed
Google Scholar
Kivela R, Hemanthakumar KA, Vaparanta K, Robciuc M, Izumiya Y, Kidoya H et al (2019) Endothelial cells regulate physiological cardiomyocyte growth via VEGFR2-mediated paracrine signaling. Circulation 139(22):2570–2584. https://doi.org/10.1161/CIRCULATIONAHA.118.036099
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheng W, Li X, Liu D, Cui C, Wang X (2021) Endothelial-to-mesenchymal transition: role in cardiac fibrosis. J Cardiovasc Pharmacol Ther 26(1):3–11. https://doi.org/10.1177/1074248420952233
CAS
Article
PubMed
Google Scholar
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS (2020) Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 101:78–86. https://doi.org/10.1016/j.semcdb.2019.10.015
CAS
Article
PubMed
Google Scholar
Gong H, Lyu X, Wang Q, Hu M, Zhang X (2017) Endothelial to mesenchymal transition in the cardiovascular system. Life Sci 184:95–102. https://doi.org/10.1016/j.lfs.2017.07.014
CAS
Article
PubMed
Google Scholar
Chen PY, Schwartz MA, Simons M (2020) Endothelial-to-mesenchymal transition, vascular inflammation, and atherosclerosis. Front Cardiovasc Med 7:53. https://doi.org/10.3389/fcvm.2020.00053
CAS
Article
PubMed
PubMed Central
Google Scholar
S G, C C-V, F. S (2018) Transforming growth factor-beta family: advances in vascular function and signaling. Curr Protein Pept Sci 19(12):1164-71
Xu L, Fu M, Chen D, Han W, Ostrowski MC, Grossfeld P et al (2019) Endothelial-specific deletion of Ets-1 attenuates angiotensin II-induced cardiac fibrosis via suppression of endothelial-to-mesenchymal transition. BMB Rep 52(10):595–600. https://doi.org/10.5483/BMBRep.2019.52.10.206
CAS
Article
PubMed
PubMed Central
Google Scholar
Frias A, Lambies G, Vinas-Castells R, Martinez-Guillamon C, Dave N, Garcia de Herreros A et al (2015) A Switch in Akt isoforms is required for notch-induced snail1 expression and protection from cell death. Mol Cell Biol 36(6):923–940. https://doi.org/10.1128/MCB.01074-15
CAS
Article
PubMed
Google Scholar
Xu X, Tan X, Tampe B, Sanchez E, Zeisberg M, Zeisberg EM (2015) Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem 290(27):16653–16664. https://doi.org/10.1074/jbc.M115.636944
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Zou J, Li B, Wang Y, Wang D, Hao Y et al (2017) RUNX3 modulates hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells. Int J Mol Med 40(1):65–74. https://doi.org/10.3892/ijmm.2017.2998
CAS
Article
PubMed
PubMed Central
Google Scholar
Dhaun N, Webb DJ (2019) Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol 16(8):491–502. https://doi.org/10.1038/s41569-019-0176-3
Article
PubMed
Google Scholar
Zhang X, Hu C, Yuan YP, Song P, Kong CY, Wu HM et al (2021) Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09581-5
Article
PubMed
PubMed Central
Google Scholar
Sandner P, Stasch JP (2017) Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respir Med 122(Suppl 1):S1–S9. https://doi.org/10.1016/j.rmed.2016.08.022
Article
PubMed
Google Scholar
Lee SW, Won JY, Kim WJ, Lee J, Kim KH, Youn SW et al (2013) Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Mol Ther 21(9):1767–1777. https://doi.org/10.1038/mt.2013.146
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang RH, Tan X, Ge LJ, Sun JC, Peng XD, Wang WZ (2019) Interleukin enhancement binding factor 3 inhibits cardiac hypertrophy by targeting asymmetric dimethylarginine-nitric oxide. Nitric Oxide 93:44–52. https://doi.org/10.1016/j.niox.2019.09.002
CAS
Article
PubMed
Google Scholar
Chan P, Liu JC, Lin LJ, Chen PY, Cheng TH, Lin JG et al (2011) Tanshinone IIA inhibits angiotensin II-induced cell proliferation in rat cardiac fibroblasts. Am J Chin Med 39(2):381–394. https://doi.org/10.1142/S0192415X11008890
CAS
Article
PubMed
Google Scholar
Gravning J, Ahmed MS, von Lueder TG, Edvardsen T, Attramadal H (2013) CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. Int J Cardiol 168(3):2049–2056. https://doi.org/10.1016/j.ijcard.2013.01.165
Article
PubMed
Google Scholar
Qu H, Wang Y, Wang Y, Yang T, Feng Z, Qu Y et al (2017) Luhong formula inhibits myocardial fibrosis in a paracrine manner by activating the gp130/JAK2/STAT3 pathway in cardiomyocytes. J Ethnopharmacol 202:28–37. https://doi.org/10.1016/j.jep.2017.01.033
Article
PubMed
Google Scholar
Tarbit E, Singh I, Peart JN, Rose’Meyer RB (2019) Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev 24(1):1–15. https://doi.org/10.1007/s10741-018-9720-1
CAS
Article
PubMed
Google Scholar
Si L, Xu J, Yi C, Xu X, Wang F, Gu W et al (2014) Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-beta1-mediated hypertrophic signaling in vitro and in vivo. Int J Mol Med 34(2):499–506. https://doi.org/10.3892/ijmm.2014.1781
CAS
Article
PubMed
Google Scholar
Zhang H, Hu J, Liu L (2017) MiR-200a modulates TGF-beta1-induced endothelial-to-mesenchymal shift via suppression of GRB2 in HAECs. Biomed Pharmacother 95:215–222. https://doi.org/10.1016/j.biopha.2017.07.104
CAS
Article
PubMed
Google Scholar
Wei X, Yang Y, Jiang YJ, Lei JM, Guo JW, Xiao H (2018) Relaxin ameliorates high glucose-induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway. Exp Ther Med 15(1):691–698. https://doi.org/10.3892/etm.2017.5448
CAS
Article
PubMed
Google Scholar
Fan YH, Dong H, Pan Q, Cao YJ, Li H, Wang HC (2011) Notch signaling may negatively regulate neonatal rat cardiac fibroblast-myofibroblast transformation. Physiol Res 60(5):739–748. https://doi.org/10.33549/physiolres.932149
CAS
Article
PubMed
Google Scholar
Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX et al (2015) Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des Devel Ther 9:4599–4611. https://doi.org/10.2147/DDDT.S85399
CAS
Article
PubMed
PubMed Central
Google Scholar
Aquino-Galvez A, Gonzalez-Avila G, Jimenez-Sanchez LL, Maldonado-Martinez HA, Cisneros J, Toscano-Marquez F et al (2019) Dysregulated expression of hypoxia-inducible factors augments myofibroblasts differentiation in idiopathic pulmonary fibrosis. Respir Res 20(1):130. https://doi.org/10.1186/s12931-019-1100-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu X, Tan X, Hulshoff MS, Wilhelmi T, Zeisberg M, Zeisberg EM (2016) Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett 590(8):1222–1233. https://doi.org/10.1002/1873-3468.12158
CAS
Article
PubMed
Google Scholar