Skip to main content

Advertisement

Log in

Targeted treatments of AL and ATTR amyloidosis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The therapeutic landscape for cardiac amyloidosis is rapidly evolving. In the last decade, our focus has shifted from dealing with the inevitable complications of continued extracellular infiltration of amyloid fibrils to earlier identification of these patients with prompt initiation of targeted therapy to prevent further deposition. Although much of the focus on novel targeted therapies is within the realm of transthyretin amyloidosis, light chain amyloidosis has benefited due to an overlap particularly in the final common pathway of fibrillogenesis and extraction of amyloid fibrils from the heart. Here, we review the targeted therapeutics for transthyretin and light chain amyloidosis. For transthyretin amyloidosis, the list of current and future therapeutics continues to evolve; and therefore, it is crucial to become familiar with the underlying mechanistic pathways of the disease. Although targeted therapeutic choices in AL amyloidosis are largely driven by the hematology team, the cardiac adverse effect profiles of these therapies, particularly in those with advanced amyloidosis, provide an opportunity for early recognition to prevent decompensation and can help inform recommendations regarding therapy changes when required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Imperlini E, Gnecchi M, Rognoni P et al (2017) Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep 7:15661. https://doi.org/10.1038/s41598-017-15424-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manral P, Reixach N (2015) Amyloidogenic and non-amyloidogenic transthyretin variants interact differently with human cardiomyocytes: insights into early events of non-fibrillar tissue damage. Biosci Rep 35:e00172. https://doi.org/10.1042/BSR20140155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merlini G, Seldin DC, Gertz MA (2011) Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol 29:1924–1933. https://doi.org/10.1200/JCO.2010.32.2271

    Article  PubMed  PubMed Central  Google Scholar 

  4. Foss TR, Wiseman RL, Kelly JW (2005) The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry 44:15525–15533. https://doi.org/10.1021/bi051608t

    Article  CAS  PubMed  Google Scholar 

  5. Kanda Y, Goodman DS, Canfield RE, Morgan FJ (1974) The amino acid sequence of human plasma prealbumin. J Biol Chem 249:6796–6805

    Article  CAS  Google Scholar 

  6. Sekijima Y, Wiseman RL, Matteson J et al (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85. https://doi.org/10.1016/j.cell.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  7. Zhao L, Buxbaum JN, Reixach N (2013) Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry 52:1913–1926. https://doi.org/10.1021/bi301313b

    Article  CAS  PubMed  Google Scholar 

  8. Crooke ST, Witztum JL, Bennett CF, Baker BF (2018) RNA-Targeted Therapeutics. Cell Metab 27:714–739. https://doi.org/10.1016/j.cmet.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Finn JD, Smith AR, Patel MC et al (2018) A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 22:2227–2235. https://doi.org/10.1016/j.celrep.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  10. Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31. https://doi.org/10.1056/NEJMoa1716793

    Article  CAS  PubMed  Google Scholar 

  11. US FDA (2018) Drug Approval Package: Tegsedi (inotersen). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211172Orig1s000TOC.cfm

  12. Gillmore JD, Maurer MS, Falk RH et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–2412. https://doi.org/10.1161/CIRCULATIONAHA.116.021612

    Article  CAS  PubMed  Google Scholar 

  13. Matsuda S, Keiser K, Nair JK et al (2015) siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem Biol 10:1181–1187. https://doi.org/10.1021/cb501028c

    Article  CAS  PubMed  Google Scholar 

  14. Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP (2017) Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res 45:12388–12400. https://doi.org/10.1093/nar/gkx960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Viney NJ, Guo S, Tai LJ et al (2021) Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Heart Fail 8:652–661. https://doi.org/10.1002/ehf2.13154

    Article  PubMed  Google Scholar 

  16. U.S. National Library of Medicine (2019) NEURO-TTRansform: A study to evaluate the efficacy and safety of AKCEA-TTR-LRx in participants with hereditary transthyretin-mediated amyloid polyneuropathy. https://ClinicalTrials.gov/show/NCT04136184

  17. U.S. National Library of Medicine (2019) CARDIO-TTRansform: A study to evaluate the efficacy and safety of AKCEA-TTR-LRx in participants with transthyretin-mediated amyloid cardiomyopathy (ATTR CM). https://ClinicalTrials.gov/show/NCT04136171

  18. Hayashi Y, Jono H (2018) Recent advances in oligonucleotide-based therapy for transthyretin amyloidosis: clinical impact and future prospects. Biol Pharm Bull 41:1737–1744. https://doi.org/10.1248/bpb.b18-00625

    Article  CAS  PubMed  Google Scholar 

  19. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  20. Coelho T, Adams D, Silva A et al (2013) Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 369:819–829. https://doi.org/10.1056/NEJMoa1208760

    Article  CAS  PubMed  Google Scholar 

  21. Suhr OB, Coelho T, Buades J et al (2015) Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis 10:109. https://doi.org/10.1186/s13023-015-0326-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adams D, Gonzalez-Duarte A, O’Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21. https://doi.org/10.1056/NEJMoa1716153

    Article  CAS  PubMed  Google Scholar 

  23. U.S. National Library of Medicine (2019) APOLLO-B: A study to evaluate patisiran in participants with transthyretin amyloidosis with cardiomyopathy (ATTR amyloidosis with cardiomyopathy). https://ClinicalTrials.gov/show/NCT03997383

  24. Habtemariam BA, Karsten V, Attarwala H et al (2021) Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther 109:372–382. https://doi.org/10.1002/cpt.1974

    Article  CAS  PubMed  Google Scholar 

  25. Judge DP, Kristen AV, Grogan M et al (2020) Phase 3 Multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther 34:357–370. https://doi.org/10.1007/s10557-019-06919-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janas MM, Schlegel MK, Harbison CE et al (2018) Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun 9:723. https://doi.org/10.1038/s41467-018-02989-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. U.S. National Library of Medicine (2019) HELIOS-B: A study to evaluate vutrisiran in patients with transthyretin amyloidosis with cardiomyopathy. https://ClinicalTrials.gov/show/NCT04153149

  28. U.S. National Library of Medicine (2018) HELIOS-A: A study of vutrisiran (ALN-TTRSC02) in patients with hereditary transthyretin amyloidosis (hATTR amyloidosis). https://ClinicalTrials.gov/show/NCT03759379

  29. Shilling R, Karsten V, Silliman N, Chen J, Li W, Vest J (2020) Study design and rationale of Helios-B: a phase 3 study to evaluate the clinical efficacy and safety of vutrisiran in patients with Attr amyloidosis with cardiomyopathy. J Am Coll Cardiol 75:3579. https://doi.org/10.1016/s0735-1097(20)34206-6

    Article  Google Scholar 

  30. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. U.S. National Library of Medicine (2020) Study to evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of NTLA-2001 in patients with hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN). https://ClinicalTrials.gov/show/NCT04601051

  32. Wen J, Cao T, Wu J et al (2021) Single AAV-mediated CRISPR/Nme2Cas9 efficiently reduces mutant hTTR expression in a transgenic mouse model of transthyretin amyloidosis. Mol Ther. https://doi.org/10.1016/j.ymthe.2021.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carvalho A, Rocha A, Lobato L (2015) Liver transplantation in transthyretin amyloidosis: issues and challenges. Liver Transpl 21:282–292. https://doi.org/10.1002/lt.24058

    Article  PubMed  Google Scholar 

  34. Yamashita T, Ando Y, Okamoto S et al (2012) Long-term survival after liver transplantation in patients with familial amyloid polyneuropathy. Neurology 78:637–643. https://doi.org/10.1212/WNL.0b013e318248df18

    Article  CAS  PubMed  Google Scholar 

  35. Okamoto S, Wixner J, Ericzon BG et al (2011) Prognostic value of pre-transplant cardiomyopathy in Swedish liver transplanted patients for familial amyloidotic polyneuropathy. Amyloid 18(Suppl 1):171–173. https://doi.org/10.3109/13506129.2011.574354064

    Article  PubMed  Google Scholar 

  36. Ando Y, Coelho T, Berk JL et al (2013) Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis 8:31. https://doi.org/10.1186/1750-1172-8-31

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gustafsson S, Ihse E, Henein MY, Westermark P, Lindqvist P, Suhr OB (2012) Amyloid fibril composition as a predictor of development of cardiomyopathy after liver transplantation for hereditary transthyretin amyloidosis. Transplantation 93:1017–1023. https://doi.org/10.1097/TP.0b013e31824b3749

    Article  CAS  PubMed  Google Scholar 

  38. Tashima K, Ando Y, Terazaki H et al (1999) Outcome of liver transplantation for transthyretin amyloidosis: follow-up of Japanese familial amyloidotic polyneuropathy patients. J Neurol Sci 171:19–23. https://doi.org/10.1016/s0022-510x(99)00231-2

    Article  CAS  PubMed  Google Scholar 

  39. Holmgren G, Ericzon BG, Groth CG et al (1993) Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 341:1113–1116. https://doi.org/10.1016/0140-6736(93)93127-m

    Article  CAS  PubMed  Google Scholar 

  40. Okamoto S, Yamashita T, Ando Y et al (2008) Evaluation of myocardial changes in familial amyloid polyneuropathy after liver transplantation. Intern Med 47:2133–2137. https://doi.org/10.2169/internalmedicine.47.1399

    Article  PubMed  Google Scholar 

  41. Saelices L, Chung K, Lee JH et al (2018) Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition. Proc Natl Acad Sci USA 115:E6741–E6750. https://doi.org/10.1073/pnas.1805131115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Llado L, Baliellas C, Casasnovas C et al (2010) Risk of transmission of systemic transthyretin amyloidosis after domino liver transplantation. Liver Transpl 16:1386–1392. https://doi.org/10.1002/lt.22174

    Article  PubMed  Google Scholar 

  43. Stangou AJ, Heaton ND, Hawkins PN (2005) Transmission of systemic transthyretin amyloidosis by means of domino liver transplantation. N Engl J Med 352:2356. https://doi.org/10.1056/NEJM200506023522219

    Article  CAS  PubMed  Google Scholar 

  44. Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660. https://doi.org/10.1021/bi00151a036

    Article  CAS  PubMed  Google Scholar 

  45. Miroy GJ, Lai Z, Lashuel HA, Peterson SA, Strang C, Kelly JW (1996) Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci USA 93:15051–15056. https://doi.org/10.1073/pnas.93.26.15051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Almeida MR, Gales L, Damas AM, Cardoso I, Saraiva MJ (2005) Small transthyretin (TTR) ligands as possible therapeutic agents in TTR amyloidoses. Curr Drug Targets CNS Neurol Disord 4:587–596. https://doi.org/10.2174/156800705774322076

    Article  CAS  PubMed  Google Scholar 

  47. Miller SR, Sekijima Y, Kelly JW (2004) Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest 84:545–552. https://doi.org/10.1038/labinvest.3700059

    Article  CAS  PubMed  Google Scholar 

  48. Sekijima Y, Dendle MA, Kelly JW (2006) Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 13:236–249. https://doi.org/10.1080/13506120600960882

    Article  CAS  PubMed  Google Scholar 

  49. Berk JL, Suhr OB, Obici L et al (2013) Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 310:2658–2667. https://doi.org/10.1001/jama.2013.283815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Castano A, Helmke S, Alvarez J, Delisle S, Maurer MS (2012) Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail 18:315–319. https://doi.org/10.1111/j.1751-7133.2012.00303.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenblum H, Castano A, Alvarez J, Goldsmith J, Helmke S, Maurer MS (2018) TTR (transthyretin) stabilizers are associated with improved survival in patients with TTR cardiac amyloidosis. Circ Heart Fail 11:e004769. https://doi.org/10.1161/circheartfailure.117.004769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ikram A, Donnelly JP, Sperry BW, Samaras C, Valent J, Hanna M (2018) Diflunisal tolerability in transthyretin cardiac amyloidosis: a single center’s experience. Amyloid 25:197–202. https://doi.org/10.1080/13506129.2018.1519507

    Article  CAS  PubMed  Google Scholar 

  53. Lohrmann G, Pipilas A, Mussinelli R et al (2020) Stabilization of cardiac function with diflunisal in transthyretin (ATTR) cardiac amyloidosis. J Card Fail 26:753–759. https://doi.org/10.1016/j.cardfail.2019.11.024

    Article  PubMed  Google Scholar 

  54. Coelho T, Merlini G, Bulawa CE et al (2016) Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. Neurol Ther 5:1–25. https://doi.org/10.1007/s40120-016-0040-x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maurer MS, Schwartz JH, Gundapaneni B et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379:1007–1016. https://doi.org/10.1056/NEJMoa1805689

    Article  CAS  PubMed  Google Scholar 

  56. Lamb YN (2021) Tafamidis: a review in transthyretin amyloid cardiomyopathy. Am J Cardiovasc Drugs 21:113–121. https://doi.org/10.1007/s40256-020-00461-7

    Article  CAS  PubMed  Google Scholar 

  57. Damy T, Garcia-Pavia P, Hanna M et al (2021) Efficacy and safety of tafamidis doses in the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) and long-term extension study. Eur J Heart Fail 23:277–285. https://doi.org/10.1002/ejhf.2027

    Article  CAS  PubMed  Google Scholar 

  58. Gurwitz JH, Maurer MS (2020) Tafamidis—A pricey therapy for a not-so-rare condition. JAMA Cardiol 5:247–248. https://doi.org/10.1001/jamacardio.2019.5233

    Article  PubMed  Google Scholar 

  59. Kazi DS, Bellows BK, Baron SJ et al (2020) Cost-effectiveness of tafamidis therapy for transthyretin amyloid cardiomyopathy. Circulation 141:1214–1224. https://doi.org/10.1161/circulationaha.119.045093

    Article  PubMed  PubMed Central  Google Scholar 

  60. Masri A, Chen H, Wong C et al (2020) Initial experience prescribing commercial tafamidis, the most expensive cardiac medication in history. JAMA Cardiol 5:1066–1067. https://doi.org/10.1001/jamacardio.2020.1738

    Article  PubMed  PubMed Central  Google Scholar 

  61. Penchala SC, Connelly S, Wang Y et al (2013) AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc Natl Acad Sci USA 110:9992–9997. https://doi.org/10.1073/pnas.1300761110

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hammarstrom P, Schneider F, Kelly JW (2001) Trans-suppression of misfolding in an amyloid disease. Science 293:2459–2462. https://doi.org/10.1126/science.1062245

    Article  CAS  PubMed  Google Scholar 

  63. Alves IL, Divino CM, Schussler GC et al (1993) Thyroxine binding in a TTR Met 119 kindred. J Clin Endocrinol Metab 77:484–488. https://doi.org/10.1210/jcem.77.2.8102146

    Article  CAS  PubMed  Google Scholar 

  64. Judge DP, Heitner SB, Falk RH et al (2019) Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 74:285–295. https://doi.org/10.1016/j.jacc.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  65. Sant’Anna R, Gallego P, Robinson LZ et al (2016) Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nat Commun 7:10787. https://doi.org/10.1038/ncomms10787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verona G, Mangione PP, Raimondi S et al (2017) Inhibition of the mechano-enzymatic amyloidogenesis of transthyretin: role of ligand affinity, binding cooperativity and occupancy of the inner channel. Sci Rep 7:182. https://doi.org/10.1038/s41598-017-00338-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolstoe SE, Mangione PP, Bellotti V et al (2010) Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Proc Natl Acad Sci USA 107:20483–20488. https://doi.org/10.1073/pnas.1008255107

    Article  PubMed  PubMed Central  Google Scholar 

  68. Corazza A, Verona G, Waudby CA et al (2019) Binding of monovalent and bivalent ligands by transthyretin causes different short- and long-distance conformational changes. J Med Chem 62:8274–8283. https://doi.org/10.1021/acs.jmedchem.9b01037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coelho T, Maia LF, da Silva AM et al (2013) Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol 260:2802–2814. https://doi.org/10.1007/s00415-013-7051-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Merlini G (2017) AL amyloidosis: from molecular mechanisms to targeted therapies. Hematology Am Soc Hematol Educ Program 2017:1–12. https://doi.org/10.1182/asheducation-2017.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blancas-Mejia LM, Ramirez-Alvarado M (2013) Systemic amyloidoses. Annu Rev Biochem 82:745–774. https://doi.org/10.1146/annurev-biochem-072611-130030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bellotti V, Mangione P, Merlini G (2000) Review: immunoglobulin light chain amyloidosis–the archetype of structural and pathogenic variability. J Struct Biol 130:280–289. https://doi.org/10.1006/jsbi.2000.4248

    Article  CAS  PubMed  Google Scholar 

  73. Griffin JM, Rosenblum H, Maurer MS (2021) Pathophysiology and therapeutic approaches to cardiac amyloidosis. Circ Res 128:1554–1575. https://doi.org/10.1161/CIRCRESAHA.121.318187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar S, Dispenzieri A, Lacy MQ et al (2012) Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 30:989–995. https://doi.org/10.1200/JCO.2011.38.5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palladini G, Dispenzieri A, Gertz MA et al (2012) New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol 30:4541–4549. https://doi.org/10.1200/JCO.2011.37.7614

    Article  CAS  PubMed  Google Scholar 

  76. Muchtar E, Gertz MA, Kumar SK et al (2017) Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood 129:2111–2119. https://doi.org/10.1182/blood-2016-11-751628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Comenzo RL, Reece D, Palladini G et al (2012) Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 26:2317–2325. https://doi.org/10.1038/leu.2012.100

    Article  CAS  PubMed  Google Scholar 

  78. Muchtar E, Dispenzieri A, Gertz MA et al (2021) Treatment of AL amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement 2020 Update. Mayo Clin Proc 96:1546–1577. https://doi.org/10.1016/j.mayocp.2021.03.012

    Article  CAS  PubMed  Google Scholar 

  79. Attal M, Harousseau JL, Stoppa AM et al (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma Intergroupe Français du Myélome. N Engl J Med 335:91–97. https://doi.org/10.1056/nejm199607113350204

    Article  CAS  PubMed  Google Scholar 

  80. Palumbo A, Cavallo F, Gay F et al (2014) Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 371:895–905. https://doi.org/10.1056/NEJMoa1402888

    Article  CAS  PubMed  Google Scholar 

  81. Jaccard A, Moreau P, Leblond V et al (2007) High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med 357:1083–1093. https://doi.org/10.1056/NEJMoa070484

    Article  CAS  PubMed  Google Scholar 

  82. Dispenzieri A, Kyle RA, Lacy MQ et al (2004) Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 103:3960–3963. https://doi.org/10.1182/blood-2003-12-4192

    Article  CAS  PubMed  Google Scholar 

  83. Muchtar E, Gertz MA, Lacy MQ et al (2019) Ten-year survivors in AL amyloidosis: characteristics and treatment pattern. Br J Haematol 187:588–594. https://doi.org/10.1111/bjh.16096

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hwa YL, Kumar SK, Gertz MA et al (2016) Induction therapy pre-autologous stem cell transplantation in immunoglobulin light chain amyloidosis: a retrospective evaluation. Am J Hematol 91:984–988. https://doi.org/10.1002/ajh.24453

    Article  CAS  PubMed  Google Scholar 

  85. Gertz MA (2018) Immunoglobulin light chain amyloidosis: 2018 Update on diagnosis, prognosis, and treatment. Am J Hematol 93:1169–1180. https://doi.org/10.1002/ajh.25149

    Article  CAS  PubMed  Google Scholar 

  86. U.S. National Library of Medicine (2021) A Study to evaluate the efficacy and safety of daratumumab in combination with cyclophosphamide, bortezomib and dexamethasone (CyBorD) compared to CyBorD alone in newly diagnosed systemic amyloid light-chain (AL) amyloidosis. https://ClinicalTrials.gov/show/NCT03201965

  87. Al Hamed R, Bazarbachi AH, Bazarbachi A, Malard F, Harousseau JL, Mohty M (2021) Comprehensive review of AL amyloidosis: some practical recommendations. Blood Cancer J 11:97. https://doi.org/10.1038/s41408-021-00486-4

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kaufman GP, Schrier SL, Lafayette RA, Arai S, Witteles RM, Liedtke M (2017) Daratumumab yields rapid and deep hematologic responses in patients with heavily pretreated AL amyloidosis. Blood 130:900–902. https://doi.org/10.1182/blood-2017-01-763599

    Article  CAS  PubMed  Google Scholar 

  89. Abeykoon JP, Zanwar S, Dispenzieri A et al (2019) Daratumumab-based therapy in patients with heavily-pretreated AL amyloidosis. Leukemia 33:531–536. https://doi.org/10.1038/s41375-018-0262-2

    Article  PubMed  Google Scholar 

  90. Potts BC, Albitar MX, Anderson KC et al (2011) Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 11:254–284. https://doi.org/10.2174/156800911794519716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bochtler T, Hegenbart U, Kunz C et al (2015) Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J Clin Oncol 33:1371–1378. https://doi.org/10.1200/JCO.2014.57.4947

    Article  CAS  PubMed  Google Scholar 

  92. Kastritis E, Leleu X, Arnulf B et al (2020) Bortezomib, melphalan, and dexamethasone for light-chain amyloidosis. J Clin Oncol 38:3252–3260. https://doi.org/10.1200/JCO.20.01285

    Article  CAS  PubMed  Google Scholar 

  93. Palladini G, Milani P, Foli A et al (2014) Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: long-term results of a risk-adapted approach. Haematologica 99:743–750. https://doi.org/10.3324/haematol.2013.095463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Greenstein S, Ghias K, Krett NL, Rosen ST (2002) Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res 8:1681–1694

    CAS  PubMed  Google Scholar 

  95. Specter R, Sanchorawala V, Seldin DC et al (2011) Kidney dysfunction during lenalidomide treatment for AL amyloidosis. Nephrol Dial Transplant 26:881–886. https://doi.org/10.1093/ndt/gfq482

    Article  CAS  PubMed  Google Scholar 

  96. Dispenzieri A, Buadi F, Laumann K et al (2012) Activity of pomalidomide in patients with immunoglobulin light-chain amyloidosis. Blood 119:5397–5404. https://doi.org/10.1182/blood-2012-02-413161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Palladini G, Milani P, Foli A et al (2017) A phase 2 trial of pomalidomide and dexamethasone rescue treatment in patients with AL amyloidosis. Blood 129:2120–2123. https://doi.org/10.1182/blood-2016-12-756528

    Article  CAS  PubMed  Google Scholar 

  98. Kastritis E, Dispenzieri A, Wechalekar AD et al (2020) Ixazomib-dexamethasone (Ixa-Dex) vs physician’s choice (PC) in relapsed/refractory (RR) primary systemic AL amyloidosis (AL) patients (pts) by prior proteasome inhibitor (PI) exposure in the phase III TOURMALINE-AL1 trial. J Clin Oncol 38:8546. https://doi.org/10.1200/JCO.2020.38.15_suppl.8546

    Article  Google Scholar 

  99. Manwani R, Mahmood S, Sachchithanantham S et al (2019) Carfilzomib is an effective upfront treatment in AL amyloidosis patients with peripheral and autonomic neuropathy. Br J Haematol 187:638–641. https://doi.org/10.1111/bjh.16122

    Article  CAS  PubMed  Google Scholar 

  100. Kumar SK, Harrison SJ, Cavo M et al (2020) Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 21:1630–1642. https://doi.org/10.1016/S1470-2045(20)30525-8

    Article  CAS  PubMed  Google Scholar 

  101. U.S. National Library of Medicine (2016) Trial of venetoclax (ABT-199) and dexamethasone for relapsed or refractory systemic AL amyloidosis. https://ClinicalTrials.gov/show/NCT03000660

  102. Sidiqi MH, Al Saleh AS, Leung N et al (2020) Venetoclax for the treatment of translocation (11;14) AL amyloidosis. Blood Cancer J 10:55. https://doi.org/10.1038/s41408-020-0321-6

    Article  PubMed  PubMed Central  Google Scholar 

  103. Martin TG, Corzo K, Chiron M et al (2019) Therapeutic opportunities with pharmacological inhibition of CD38 with isatuximab. Cells 8:1522. https://doi.org/10.3390/cells8121522

    Article  CAS  PubMed Central  Google Scholar 

  104. U.S. National Library of Medicine (2018) S1702 Isatuximab in treating patients with relapsed or refractory primary amyloidosis. https://ClinicalTrials.gov/show/NCT03499808

  105. Cardoso I, Martins D, Ribeiro T, Merlini G, Saraiva MJ (2010) Synergy of combined doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models. J Transl Med 8:74. https://doi.org/10.1186/1479-5876-8-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Forloni G, Colombo L, Girola L, Tagliavini F, Salmona M (2001) Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett 487:404–407. https://doi.org/10.1016/s0014-5793(00)02380-2

    Article  CAS  PubMed  Google Scholar 

  107. Obici L, Cortese A, Lozza A et al (2012) Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid 19(Suppl 1):34–36. https://doi.org/10.3109/13506129.2012.678508

    Article  CAS  PubMed  Google Scholar 

  108. Wixner J, Pilebro B, Lundgren HE, Olsson M, Anan I (2017) Effect of doxycycline and ursodeoxycholic acid on transthyretin amyloidosis. Amyloid 24:78–79. https://doi.org/10.1080/13506129.2016.1269739

    Article  CAS  PubMed  Google Scholar 

  109. Witteles RM (2019) Doxycycline and ursodiol for ATTR amyloidosis: not ready for prime time. J Card Fail 25:154–155. https://doi.org/10.1016/j.cardfail.2019.01.014

    Article  PubMed  Google Scholar 

  110. Gillmore JD, Tennent GA, Hutchinson WL et al (2010) Sustained pharmacological depletion of serum amyloid P component in patients with systemic amyloidosis. Br J Haematol 148:760–767. https://doi.org/10.1111/j.1365-2141.2009.08036.x

    Article  CAS  PubMed  Google Scholar 

  111. Dohrn MF, Ihne S, Hegenbart U et al (2021) Targeting transthyretin - mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. J Neurochem 156:802–818. https://doi.org/10.1111/jnc.15233

    Article  CAS  PubMed  Google Scholar 

  112. Richards DB, Cookson LM, Berges AC et al (2015) Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med 373:1106–1114. https://doi.org/10.1056/NEJMoa1504942

    Article  CAS  PubMed  Google Scholar 

  113. U.S. National Library of Medicine (2019) Multiple treatment session study to assess GSK2398852 administered following and along with GSK2315698. https://ClinicalTrials.gov/show/NCT03044353

  114. Galant NJ, Bugyei-Twum A, Rakhit R et al (2016) Substoichiometric inhibition of transthyretin misfolding by immune-targeting sparsely populated misfolding intermediates: a potential diagnostic and therapeutic for TTR amyloidoses. Sci Rep 6:25080. https://doi.org/10.1038/srep25080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gertz MA, Landau H, Comenzo RL et al (2016) First-in-human phase I/II Study of NEOD001 in patients with light chain amyloidosis and persistent organ dysfunction. J Clin Oncol 34:1097–1103. https://doi.org/10.1200/JCO.2015.63.6530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. U.S. National Library of Medicine (2019) The PRONTO Study, a global phase 2b study of NEOD001 in previously treated subjects with light chain (AL) amyloidosis. https://ClinicalTrials.gov/show/NCT02632786

  117. Valent J, Silowsky J, Kurman MR et al (2020) Cael-101 is well-tolerated in AL amyloidosis patients receiving concomitant cyclophosphamide-bortezomib-dexamethasone (CyborD): a phase 2 dose-finding study (NCT04304144). Blood 136:26–27. https://doi.org/10.1182/blood-2020-139323

    Article  Google Scholar 

  118. Higaki JN, Chakrabartty A, Galant NJ et al (2016) Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin. Amyloid 23:86–97. https://doi.org/10.3109/13506129.2016.1148025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ando Y, Ueda M (2017) Antibody therapy for transthyretin-related hereditary amyloid polyneuropathy: another therapeutic option. Amyloid 24:113–114. https://doi.org/10.1080/13506129.2017.1293514

    Article  PubMed  Google Scholar 

  120. U.S. National Library of Medicine (2017) A study of PRX004 in subjects with amyloid transthyretin (ATTR) amyloidosis. https://ClinicalTrials.gov/show/NCT03336580

  121. U.S. National Library of Medicine (2020) First-in-human study of NI006 in patients with amyloid transthyretin cardiomyopathy. https://ClinicalTrials.gov/show/NCT04360434

  122. Gertz MA, Lacy MQ, Dispenzieri A et al (2016) Stem cell transplantation compared with melphalan plus dexamethasone in the treatment of immunoglobulin light-chain amyloidosis. Cancer 122:2197–2205. https://doi.org/10.1002/cncr.30051

    Article  CAS  PubMed  Google Scholar 

  123. van Gameren II, Hazenberg BPC, Jager PL, Smit JW, Vellenga E (2002) AL amyloidosis treated with induction chemotherapy with VAD followed by high dose melphalan and autologous stem cell transplantation. Amyloid 9:165–174. https://doi.org/10.3109/13506120209114818

    Article  PubMed  Google Scholar 

  124. Gono T, Matsuda M, Shimojima Y et al (2004) VAD with or without subsequent high-dose melphalan followed by autologous stem cell support in AL amyloidosis: Japanese experience and criteria for patient selection. Amyloid 11:245–256. https://doi.org/10.1080/13506120412331336907

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry H. Trachtenberg.

Ethics declarations

Conflict of interest

Pranav Chandrashekar is supported by a nationally competitive educational grant from Pfizer paid directly to OHSU. Barry Trachtenberg is a speaker for Pfizer, Akcea, and Alnylam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekar, P., Desai, A.K. & Trachtenberg, B.H. Targeted treatments of AL and ATTR amyloidosis. Heart Fail Rev 27, 1587–1603 (2022). https://doi.org/10.1007/s10741-021-10180-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10180-z

Keywords

Navigation