Skip to main content
Log in

How His bundle pacing prevents and reverses heart failure induced by right ventricular pacing

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Ideal heart performance demands vigorous systolic contractions and rapid diastolic relaxation. These sequential events are precisely timed and interdependent and require the rapid synchronous electrical stimulation provided by the His-Purkinje system. Right ventricular (RV) pacing creates slow asynchronous electrical stimulation that disrupts the timing of the cardiac cycle and results in left ventricular (LV) mechanical asynchrony. Long-term mechanical asynchrony produces LV dysfunction, remodeling, and clinical heart failure. His bundle pacing preserves synchronous electrical and mechanical LV function, prevents or reverses RV pacemaker-induced remodeling, and reduces heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bradshaw PJ, Stobie P, Knuiman MW, Briffa TG, Hobbs MST (2014) Trends in the incidence and prevalence of cardiac pacemaker insertions in an ageing population. Open Heart 1(1):e000177

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A, Dual Chamber and VVI Implantable Defibrillator Trial Investigators (2002) Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. Jama 288(24):3115–3123

    Article  PubMed  Google Scholar 

  3. Tops LF, Schalij MJ, Bax JJ (2009) The effects of right ventricular apical pacing on ventricular function and dyssynchrony implications for therapy. J Am Coll Cardiol 54(9):764–776

    Article  PubMed  Google Scholar 

  4. Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA, MOde Selection Trial Investigators (2003) Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107(23):2932–2937

    Article  PubMed  Google Scholar 

  5. Ramanathan C, Jia P, Ghanem R, Ryu K, Rudy Y (2006) Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci U S A 103(16):6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reckova M, Rosengarten C, deAlmeida A, Stanley CP, Wessels A, Gourdie RG, Thompson RP, Sedmera D (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93(1):77–85

    Article  CAS  PubMed  Google Scholar 

  7. Harvey, W., The anatomical exercise, De Motu Cordis De Ciculatione Sanguinis, 1628

  8. Buckberg G (2018) Solving the mysteries of heart disease: life-saving answers ignored by the medical establishment. Health House Press

  9. Rüssel IK, Götte MJ, Bronzwaer JG, Knaapen P, Paulus WJ, van Rossum A (2009) Left ventricular torsion: an expanding role in the analysis of myocardial dysfunction. JACC. Cardiovascular Imaging 2(5):648–655

    PubMed  Google Scholar 

  10. Young AA, Cowan BR (2012) Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:49

    Article  PubMed  PubMed Central  Google Scholar 

  11. Henson RE, Song SK, Pastorek JS, Ackerman JJH, Lorenz CH (2000) Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 278(4):H1117–H1123

    Article  CAS  PubMed  Google Scholar 

  12. Ingels NB Jr, Hansen DE, Daughters GT 2nd, Stinson EB, Alderman EL, Miller DC (1989) Relation between longitudinal, circumferential, and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ Res 64(5):915–927

    Article  PubMed  Google Scholar 

  13. Streeter DD Jr et al (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347

    Article  PubMed  Google Scholar 

  14. Kato T, Ohte N, Wakami K, Goto T, Fukuta H, Narita H, Kimura G (2010) Myocardial fiber shortening in the circumferential direction produces left ventricular wall thickening during contraction. Tohoku J Exp Med 222(3):175–181

    Article  PubMed  Google Scholar 

  15. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81(4):1236–1244

    Article  CAS  PubMed  Google Scholar 

  16. Notomi Y, Shiota T, Popović ZB, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD, Setser RM, White RD, Lysyansky P, Martin-Miklovic MG (2005) Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45(12):2034–2041

    Article  PubMed  Google Scholar 

  17. Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M (2007) Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr 20(5):539–551

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sengupta PP et al (2008) Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging 1(3):366–376

    Article  PubMed  Google Scholar 

  19. Ingels NB Jr (1997) Myocardial fiber architecture and left ventricular function. Technol Health Care 5(1–2):45–52

    Article  PubMed  Google Scholar 

  20. Sallin EA (1969) Fiber orientation and ejection fraction in the human left ventricle. Biophys J 9(7):954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rademakers FE, Rogers WJ, Guier WH, Hutchins GM, Siu CO, Weisfeldt ML, Weiss JL, Shapiro EP (1994) Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89(3):1174–1182

    Article  CAS  PubMed  Google Scholar 

  22. Taber LA, Yang M, Podszus WW (1996) Mechanics of ventricular torsion. J Biomech 29(6):745–752

    Article  CAS  PubMed  Google Scholar 

  23. Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63(3):550–562

    Article  CAS  PubMed  Google Scholar 

  24. Tsuiki K, Ritman EL (1980) Direct evidence that left ventricular myocardium is incompressible throughout systole and diastole. Tohoku J Exp Med 132(1):119–120

    Article  CAS  PubMed  Google Scholar 

  25. Jeung MY, Germain P, Croisille P, ghannudi SE, Roy C, Gangi A (2012) Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics 32(5):1381–1398

    Article  PubMed  Google Scholar 

  26. Ling D et al (1979) Regional diastolic mechanics of the left ventricle in the conscious dog. Am J Phys 236(2):H323–H330

    CAS  Google Scholar 

  27. Sonnenblick EH (1980) The structural basis and importance of restoring forces and elastic recoil for the filling of the heart. Eur Heart J (Suppl A):107–110

  28. Chung CS, Shmuylovich L, Kovacs SJ (2015) What global diastolic function is, what it is not, and how to measure it. Am J Physiol Heart Circ Physiol 309(9):H1392–H1406

    Article  CAS  PubMed  Google Scholar 

  29. Nikolic S et al (1988) Passive properties of canine left ventricle: diastolic stiffness and restoring forces. Circ Res 62(6):1210–1222

    Article  CAS  PubMed  Google Scholar 

  30. Opdahl A, Remme EW, Helle-Valle T, Lyseggen E, Vartdal T, Pettersen E, Edvardsen T, Smiseth OA (2009) Determinants of left ventricular early-diastolic lengthening velocity: independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation 119(19):2578–2586

    Article  PubMed  Google Scholar 

  31. Courtois M, Kovacs SJ Jr, Ludbrook PA (1988) Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78(3):661–671

    Article  CAS  PubMed  Google Scholar 

  32. Courtois M, Kovacs SJ, Ludbrook PA (1990) Physiological early diastolic intraventricular pressure gradient is lost during acute myocardial ischemia. Circulation 81(5):1688–1696

    Article  CAS  PubMed  Google Scholar 

  33. Nikolic SD et al (1995) Origin of regional pressure gradients in the left ventricle during early diastole. Am J Phys 268(2 Pt 2):H550–H557

    CAS  Google Scholar 

  34. Nakatani S (2011) Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound 19(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sengupta PP et al (2005) Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers. J Appl Physiol (1985) 99(3):1104–1111

    Article  Google Scholar 

  36. Rosen BD, Gerber BL, Edvardsen T, Castillo E, Amado LC, Nasir K, Kraitchman DL, Osman NF, Bluemke DA, Lima JAC (2004) Late systolic onset of regional LV relaxation demonstrated in three-dimensional space by MRI tissue tagging. Am J Physiol Heart Circ Physiol 287(4):H1740–H1746

    Article  CAS  PubMed  Google Scholar 

  37. Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol 281(5):H2002–H2009

    Article  CAS  PubMed  Google Scholar 

  38. Rademakers FE, Buchalter MB, Rogers WJ, Zerhouni EA, Weisfeldt ML, Weiss JL, Shapiro EP (1992) Dissociation between left ventricular untwisting and filling. Accentuation by catecholamines. Circulation 85(4):1572–1581

    Article  CAS  PubMed  Google Scholar 

  39. Notomi Y, Martin-Miklovic MG, Oryszak SJ, Shiota T, Deserranno D, Popovic ZB, Garcia MJ, Greenberg NL, Thomas JD (2006) Enhanced ventricular untwisting during exercise: a mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation 113(21):2524–2533

    Article  PubMed  Google Scholar 

  40. Notomi Y, Popović ZB, Yamada H, Wallick DW, Martin MG, Oryszak SJ, Shiota T, Greenberg NL, Thomas JD (2008) Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol 294(1):H505–H513

    Article  CAS  PubMed  Google Scholar 

  41. Kim WJ, Lee BH, Kim YJ, Kang JH, Jung YJ, Song JM, Kang DH, Song JK (2009) Apical rotation assessed by speckle-tracking echocardiography as an index of global left ventricular contractility. Circ Cardiovasc Imaging 2(2):123–131

    Article  PubMed  Google Scholar 

  42. Murtaza G, Virk HUH, Khalid M, Rahman Z, Sitwala P, Schoondyke J, al-Balbissi K (2017) Role of speckle tracking echocardiography in dilated cardiomyopathy: a review. Cureus 9(6):e1372

    PubMed  PubMed Central  Google Scholar 

  43. Beyar R, Sideman S (1985) Effect of the twisting motion on the nonuniformities of transmyocardial fiber mechanics and energy demand--a theoretical study. IEEE Trans Biomed Eng 32(10):764–769

    Article  CAS  PubMed  Google Scholar 

  44. Matsumoto K, Tanaka H, Tatsumi K, Miyoshi T, Hiraishi M, Kaneko A, Tsuji T, Ryo K, Fukuda Y, Yoshida A, Kawai H, Hirata KI (2012) Left ventricular dyssynchrony using three-dimensional speckle-tracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 109(8):1197–1205

    Article  PubMed  Google Scholar 

  45. LeGrice IJ, Takayama Y, Covell JW (1995) Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 77(1):182–193

    Article  CAS  PubMed  Google Scholar 

  46. Azhari H, Weiss JL, Shapiro EP (1995) Distribution of myocardial strains: an MRI study. Adv Exp Med Biol 382:319–328

    Article  CAS  PubMed  Google Scholar 

  47. Coppola BA, Omens JH (2008) Role of tissue structure on ventricular wall mechanics. Mol Cell Biomech 5(3):183–196

    PubMed  PubMed Central  Google Scholar 

  48. Costa KD et al (1999) Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Phys 276(2):H595–H607

    CAS  Google Scholar 

  49. LeGrice IJ et al (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Phys 269(2 Pt 2):H571–H582

    CAS  Google Scholar 

  50. Takayama Y, Costa KD, Covell JW (2002) Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium. Am J Physiol Heart Circ Physiol 282(4):H1510–H1520

    Article  CAS  PubMed  Google Scholar 

  51. Ashikaga H, Criscione JC, Omens JH, Covell JW, Ingels NB Jr (2004) Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol 286(2):H640–H647

    Article  CAS  PubMed  Google Scholar 

  52. Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280(2):H610–H620

    Article  CAS  PubMed  Google Scholar 

  53. Cheng A, Nguyen TC, Malinowski M, Daughters GT, Miller DC, Ingels NB Jr (2008) Heterogeneity of left ventricular wall thickening mechanisms. Circulation 118(7):713–721

    Article  PubMed  PubMed Central  Google Scholar 

  54. Harrington KB, Rodriguez F, Cheng A, Langer F, Ashikaga H, Daughters GT, Criscione JC, Ingels NB, Miller DC (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics. Am J Physiol Heart Circ Physiol 288(3):H1324–H1330

    Article  CAS  PubMed  Google Scholar 

  55. Yuan LJ, Takenaka K, Uno K, Ebihara A, Sasaki K, Komuro T, Sonoda M, Nagai R (2014) Normal and shear strains of the left ventricle in healthy human subjects measured by two-dimensional speckle tracking echocardiography. Cardiovasc Ultrasound 12:7

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thompson RB, Paterson I, Chow K, Cheng-Baron J, Scott JM, Esch BT, Ennis DB, Haykowsky MJ (2010) Characterization of the relationship between systolic shear strain and early diastolic shear strain rates: insights into torsional recoil. Am J Physiol Heart Circ Physiol 299(3):H898–H907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Badke FR, Boinay P, Covell JW (1980) Effects of ventricular pacing on regional left ventricular performance in the dog. Am J Phys 238(6):H858–H867

    CAS  Google Scholar 

  58. Burkhoff D, Oikawa RY, Sagawa K (1986) Influence of pacing site on canine left ventricular contraction. Am J Phys 251(2 Pt 2):H428–H435

    CAS  Google Scholar 

  59. Liu WH, Chen MC, Chen YL, Guo BF, Pan KL, Yang CH, Chang HW (2008) Right ventricular apical pacing acutely impairs left ventricular function and induces mechanical dyssynchrony in patients with sick sinus syndrome: a real-time three-dimensional echocardiographic study. J Am Soc Echocardiogr 21(3):224–229

    Article  PubMed  Google Scholar 

  60. Prinzen FW et al (1990) Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Phys 259(2 Pt 2):H300–H308

    CAS  Google Scholar 

  61. Prinzen FW, Hunter WC, Wyman BT, McVeigh ER (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33(6):1735–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prinzen FW, Peschar M (2002) Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing Clin Electrophysiol 25(4 Pt 1):484–498

    Article  PubMed  Google Scholar 

  63. Vijayaraman P, Chung MK, Dandamudi G, Upadhyay GA, Krishnan K, Crossley G, Bova Campbell K, Lee BK, Refaat MM, Saksena S, Fisher JD, Lakkireddy D, ACC’s Electrophysiology Council (2018) His bundle pacing. J Am Coll Cardiol 72(8):927–947

    Article  PubMed  Google Scholar 

  64. Delgado V, Tops LF, Trines SA, Zeppenfeld K, Ajmone Marsan N, Bertini M, Holman ER, Schalij MJ, Bax JJ (2009) Acute effects of right ventricular apical pacing on left ventricular synchrony and mechanics. Circ Arrhythm Electrophysiol 2(2):135–145

    Article  PubMed  Google Scholar 

  65. Waldman LK, Covell JW (1987) Effects of ventricular pacing on finite deformation in canine left ventricles. Am J Phys 252(5 Pt 2):H1023–H1030

    CAS  Google Scholar 

  66. Sweeney MO, Prinzen FW (2008) Ventricular pump function and pacing: physiological and clinical integration. Circ Arrhythm Electrophysiol 1(2):127–139

    Article  PubMed  Google Scholar 

  67. Delhaas T, Arts T, Prinzen FW, Reneman RS (1994) Regional fibre stress-fibre strain area as an estimate of regional blood flow and oxygen demand in the canine heart. J Physiol 477(Pt 3):481–496

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tse HF, Lau CP (1997) Long-term effect of right ventricular pacing on myocardial perfusion and function. J Am Coll Cardiol 29(4):744–749

    Article  CAS  PubMed  Google Scholar 

  69. Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL (1998) Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21(12 Suppl 1):I14–I19

    Article  CAS  PubMed  Google Scholar 

  70. Sabbah HN, Goldstein S (1993) Ventricular remodelling: consequences and therapy. Eur Heart J 14(Suppl C):24–29

    Article  PubMed  Google Scholar 

  71. Prinzen FW, Cheriex EC, Delhaas T, van Oosterhout MFM, Arts T, Wellens HJJ, Reneman RS (1995) Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J 130(5):1045–1053

    Article  CAS  PubMed  Google Scholar 

  72. van Oosterhout MF et al (1998) Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation 98(6):588–595

    Article  PubMed  Google Scholar 

  73. Moon MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Hansen DE, Miller DC (1994) Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation 89(1):142–150

    Article  CAS  PubMed  Google Scholar 

  74. Askenazi J, Alexander JH, Koenigsberg DI, Belic N, Lesch M (1984) Alteration of left ventricular performance by left bundle branch block simulated with atrioventricular sequential pacing. Am J Cardiol 53(1):99–104

    Article  CAS  PubMed  Google Scholar 

  75. Chan JY et al (2011) Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the PACE trial. Eur Heart J 32(20):2533–2540

    Article  PubMed  Google Scholar 

  76. Dickstein K (2011) Chronic right ventricular pacing, adverse remodelling, and CRT: an ounce of prevention? Eur Heart J 32(20):2483–2485

    Article  PubMed  Google Scholar 

  77. Cameli M, Lisi M, Righini FM, Massoni A, Mondillo S (2013) Left ventricular remodeling and torsion dynamics in hypertensive patients. Int J Card Imaging 29(1):79–86

    Article  Google Scholar 

  78. Popescu BA, Beladan CC, Călin A, Muraru D, Deleanu D, Roşca M, Ginghină C (2009) Left ventricular remodelling and torsional dynamics in dilated cardiomyopathy: reversed apical rotation as a marker of disease severity. Eur J Heart Fail 11(10):945–951

    Article  PubMed  Google Scholar 

  79. van Dalen BM et al (2010) Influence of cardiac shape on left ventricular twist. J Appl Physiol (1985) 108(1):146–151

    Article  Google Scholar 

  80. Anversa P, Olivetti G, Capasso JM (1991) Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 68(14):7d–16d

    Article  CAS  PubMed  Google Scholar 

  81. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86(2):426–430

    Article  CAS  PubMed  Google Scholar 

  82. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13(7):1637–1652

    Article  CAS  PubMed  Google Scholar 

  83. Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB (1988) Inadequate collagen tethers in dilated cardiopathy. Am Heart J 116(6 Pt 1):1641–1646

    Article  CAS  PubMed  Google Scholar 

  84. Douglas PS, Morrow R, Ioli A, Reichek N (1989) Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 13(2):311–315

    Article  CAS  PubMed  Google Scholar 

  85. Sabbah HN et al (1992) Left ventricular shape changes during the course of evolving heart failure. Am J Phys 263(1 Pt 2):H266–H270

    CAS  Google Scholar 

  86. Suzuki M et al (1997) Left ventricular spherical dilation and regional contractile dysfunction in dogs with heart failure. Am J Phys 273(3 Pt 2):H1058–H1067

    CAS  Google Scholar 

  87. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tibayan FA, Lai DTM, Timek TA, Dagum P, Liang D, Daughters GT, Ingels NB, Miller DC (2002) Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J Thorac Cardiovasc Surg 124(1):43–49

    Article  PubMed  Google Scholar 

  89. Kono T, Sabbah HN, Stein PD, Brymer JF, Khaja F (1991) Left ventricular shape as a determinant of functional mitral regurgitation in patients with severe heart failure secondary to either coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol 68(4):355–359

    Article  CAS  PubMed  Google Scholar 

  90. Leclercq C, Gras D, le Helloco A, Nicol L, Mabo P, Daubert C (1995) Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing. Am Heart J 129(6):1133–1141

    Article  CAS  PubMed  Google Scholar 

  91. Nielsen JC, Andersen HR, Thomsen PEB, Thuesen L, Mortensen PT, Vesterlund T, Pedersen AK (1998) Heart failure and echocardiographic changes during long-term follow-up of patients with sick sinus syndrome randomized to single-chamber atrial or ventricular pacing. Circulation 97(10):987–995

    Article  CAS  PubMed  Google Scholar 

  92. Rosenqvist M, Brandt J, Schuller H (1988) Long-term pacing in sinus node disease: effects of stimulation mode on cardiovascular morbidity and mortality. Am Heart J 116(1 Pt 1):16–22

    Article  CAS  PubMed  Google Scholar 

  93. Rosenqvist M, Isaaz K, Botvinick EH, Dae MW, Cockrell J, Abbott JA, Schiller NB, Griffin JC (1991) Relative importance of activation sequence compared to atrioventricular synchrony in left ventricular function. Am J Cardiol 67(2):148–156

    Article  CAS  PubMed  Google Scholar 

  94. Tops LF, Suffoletto MS, Bleeker GB, Boersma E, van der Wall EE, Gorcsan J III, Schalij MJ, Bax JJ (2007) Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. J Am Coll Cardiol 50(12):1180–1188

    Article  PubMed  Google Scholar 

  95. Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28(5):629–635

    Article  CAS  PubMed  Google Scholar 

  96. Sorger JM et al (2003) Torsion of the left ventricle during pacing with MRI tagging. J Cardiovasc Magn Reson 5(4):521–530

    Article  PubMed  Google Scholar 

  97. Park RC, Little WC, O'Rourke RA (1985) Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circ Res 57(5):706–717

    Article  CAS  PubMed  Google Scholar 

  98. Dreger H, Maethner K, Bondke H, Baumann G, Melzer C (2012) Pacing-induced cardiomyopathy in patients with right ventricular stimulation for >15 years. Europace 14(2):238–242

    Article  PubMed  Google Scholar 

  99. Sweeney MO, Hellkamp AS (2006) Heart failure during cardiac pacing. Circulation 113(17):2082–2088

    Article  PubMed  Google Scholar 

  100. Miyoshi F et al (2005) Prolonged paced QRS duration as a predictor for congestive heart failure in patients with right ventricular apical pacing. Pacing Clin Electrophysiol 28(11):1182–1188

    Article  PubMed  Google Scholar 

  101. Sumiyoshi M et al (1992) Clinical significance of QRS duration during ventricular pacing. Pacing Clin Electrophysiol 15(7):1053–1064

    Article  CAS  PubMed  Google Scholar 

  102. Lamas GA, Lee KL, Sweeney MO, Silverman R, Leon A, Yee R, Marinchak RA, Flaker G, Schron E, Orav EJ, Hellkamp AS, Greer S, McAnulty J, Ellenbogen K, Ehlert F, Freedman RA, Estes NA 3rd, Greenspon A, Goldman L, Mode Selection Trial in Sinus-Node Dysfunction (2002) Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med 346(24):1854–1862

  103. Schmidt M, Brömsen J, Herholz C, Adler K, Neff F, Kopf C, Block M (2007) Evidence of left ventricular dyssynchrony resulting from right ventricular pacing in patients with severely depressed left ventricular ejection fraction. Europace 9(1):34–40

    Article  PubMed  Google Scholar 

  104. Barsheshet A, Moss AJ, McNitt S, Jons C, Glikson M, Klein HU, Huang DT, Steinberg JS, Brown MW, Zareba W, Goldenberg I, MADIT-II Executive Committee (2011) Long-term implications of cumulative right ventricular pacing among patients with an implantable cardioverter-defibrillator. Heart Rhythm 8(2):212–218

    Article  PubMed  Google Scholar 

  105. Karpawich PP, Rabah R, Haas JE (1999) Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol 22(9):1372–1377

    Article  CAS  PubMed  Google Scholar 

  106. Vijayaraman P, Bordachar P, Ellenbogen KA (2017) The continued search for physiological pacing: where are we now? J Am Coll Cardiol 69(25):3099–3114

    Article  PubMed  Google Scholar 

  107. Katritsis DG (2017) Choice of ventricular pacing site: the end of non-physiological, apical ventricular pacing? Arrhythmia Electrophysiol Rev 6(4):159–160

    Article  Google Scholar 

  108. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NAM III, Ferguson TB Jr, Hammill SC, Karasik PE, Link MS, Marine JE, Schoenfeld MH, Shanker AJ, Silka MJ, Stevenson LW, Stevenson WG, Varosy PD (2012) 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 60(14):1297–1313

    Article  PubMed  Google Scholar 

  109. Healey JS, Toff WD, Lamas GA, Andersen HR, Thorpe KE, Ellenbogen KA, Lee KL, Skene AM, Schron EB, Skehan JD, Goldman L, Roberts RS, Camm AJ, Yusuf S, Connolly SJ (2006) Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation 114(1):11–17

    Article  PubMed  Google Scholar 

  110. Domenichini G, Sunthorn H, Fleury E, Foulkes H, Stettler C, Burri H (2012) Pacing of the interventricular septum versus the right ventricular apex: a prospective, randomized study. Eur J Intern Med 23(7):621–627

    Article  PubMed  Google Scholar 

  111. Kaye GC, Linker NJ, Marwick TH, Pollock L, Graham L, Pouliot E, Poloniecki J, Gammage M, on behalf of the Protect-Pace trial investigators, Kaye G, Martin P, Pepper C, Tang K, Crozier I, Goode G, Young G, Petkar S, Langford E, Linker NJ, Rozkovec A, Rinaldi A, Yousef Z, Lever N, Denman R, Young G, Williams I, McGavigan A (2015) Effect of right ventricular pacing lead site on left ventricular function in patients with high-grade atrioventricular block: results of the Protect-Pace study. Eur Heart J 36(14):856–862

    Article  PubMed  Google Scholar 

  112. Shimony A, Eisenberg MJ, Filion KB, Amit G (2012) Beneficial effects of right ventricular non-apical vs. apical pacing: a systematic review and meta-analysis of randomized-controlled trials. Europace 14(1):81–91

    Article  PubMed  Google Scholar 

  113. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, Cannom D, Daubert JP, Eldar M, Gold MR, Goldberger JJ, Goldenberg I, Lichstein E, Pitschner H, Rashtian M, Solomon S, Viskin S, Wang P, Moss AJ, MADIT-CRT Investigators (2011) Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac resynchronization Therapy (MADIT-CRT). Circulation 123(10):1061–1072

    Article  PubMed  Google Scholar 

  114. Singh JP, Fan D, Heist EK, Alabiad CR, Taub C, Reddy V, Mansour M, Picard MH, Ruskin JN, Mela T (2006) Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm 3(11):1285–1292

    Article  PubMed  Google Scholar 

  115. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O'Halloran D, Elsik M, Read PA, Begley D, Fynn SP, Dutka DP (2012) Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol 59(17):1509–1518

    Article  PubMed  Google Scholar 

  116. Liang Y, Pan W, Su Y, Ge J (2011) Meta-analysis of randomized controlled trials comparing isolated left ventricular and biventricular pacing in patients with chronic heart failure. Am J Cardiol 108(8):1160–1165

    Article  PubMed  Google Scholar 

  117. Vatankulu MA, Goktekin O, Kaya MG, Ayhan S, Kucukdurmaz Z, Sutton R, Henein M (2009) Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. Am J Cardiol 103(9):1280–1284

    Article  PubMed  Google Scholar 

  118. Bertini M, Marsan NA, Delgado V, van Bommel RJ, Nucifora G, Borleffs CJW, Boriani G, Biffi M, Holman ER, van der Wall EE, Schalij MJ, Bax JJ (2009) Effects of cardiac resynchronization therapy on left ventricular twist. J Am Coll Cardiol 54(14):1317–1325

    Article  PubMed  Google Scholar 

  119. Sade LE, Demir Ö, Atar I, Müderrisoglu H, Özin B (2008) Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics. Am J Cardiol 101(8):1163–1169

    Article  PubMed  Google Scholar 

  120. Bertini M et al (2009) Role of left ventricular twist mechanics in the assessment of cardiac dyssynchrony in heart failure. JACC Cardiovasc Imaging 2(12):1425–1435

    Article  PubMed  Google Scholar 

  121. Zhang Q, Fung JWH, Yip GWK, Chan JYS, Lee APW, Lam YY, Wu LW, Wu EB, Yu CM (2008) Improvement of left ventricular myocardial short-axis, but not long-axis function or torsion after cardiac resynchronisation therapy: an assessment by two-dimensional speckle tracking. Heart 94(11):1464–1471

    Article  CAS  PubMed  Google Scholar 

  122. Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, Dickstein K, Ford I, Gorcsan J 3rd, Gras D, Krum H, Sogaard P, Holzmeister J, EchoCRT Study Group (2013) Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. N Engl J Med 369(15):1395–1405

  123. Auricchio A, Prinzen FW (2011) Non-responders to cardiac resynchronization therapy: the magnitude of the problem and the issues. Circ J 75(3):521–527

    Article  PubMed  Google Scholar 

  124. Ali N, National Heart and Lung Institute, Imperial College London, UK, Keene D, National Heart and Lung Institute, Imperial College London, UK, Arnold A, National Heart and Lung Institute, Imperial College London, UK, Shun-Shin M, National Heart and Lung Institute, Imperial College London, UK, Whinnett ZI, National Heart and Lung Institute, Imperial College London, UK, Sohaib SMA, National Heart and Lung Institute, Imperial College London, UK (2018) His bundle pacing: a new frontier in the treatment of heart failure. Arrhythmia Electrophysiol Rev 7(2):103–110

    Article  Google Scholar 

  125. Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H (2009) The anatomy of the cardiac conduction system. Clin Anat 22(1):99–113

    Article  PubMed  Google Scholar 

  126. Kaufmann R, R.C (1919) Beitrage zur Entstehungsweise Extrasysfolischer Allorhytlmien. Zeitschrift fur die Cesamte Exerimentelle Medizin 9:104–122

    Article  Google Scholar 

  127. James TN, Sherf L (1971) Fine structure of the His bundle. Circulation 44(1):9–28

    Article  CAS  PubMed  Google Scholar 

  128. Scherlag BJ, Kosowsky BD, Damato AN (1967) A technique for ventricular pacing from the His bundle of the intact heart. J Appl Physiol 22(3):584–587

    Article  CAS  PubMed  Google Scholar 

  129. Narula OS, Scherlag BJ, Samet P (1970) Pervenous pacing of the specialized conducting system in man. His bundle and A-V nodal stimulation. Circulation 41(1):77–87

    Article  CAS  PubMed  Google Scholar 

  130. Deshmukh P, Casavant DA, Romanyshyn M, Anderson K (2000) Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation 101(8):869–877

    Article  CAS  PubMed  Google Scholar 

  131. Narula OS (1977) Longitudinal dissociation in the His bundle. Bundle branch block due to asynchronous conduction within the His bundle in man. Circulation 56(6):996–1006

    Article  CAS  PubMed  Google Scholar 

  132. Dandamudi G, Vijayaraman P (2016) How to perform permanent His bundle pacing in routine clinical practice. Heart Rhythm 13(6):1362–1366

    Article  PubMed  Google Scholar 

  133. Zanon F et al (2006) A feasible approach for direct His-bundle pacing using a new steerable catheter to facilitate precise lead placement. J Cardiovasc Electrophysiol 17(1):29–33

    PubMed  Google Scholar 

  134. Bhatt AG, Musat DL, Milstein N, Pimienta J, Flynn L, Sichrovsky T, Preminger MW, Mittal S (2018) The efficacy of His bundle pacing: lessons learned from implementation for the first time at an experienced electrophysiology center. JACC Clinical electrophysiology 4(11):1397–1406

    Article  PubMed  Google Scholar 

  135. Sharma PS, Dandamudi G, Naperkowski A, Oren JW, Storm RH, Ellenbogen KA, Vijayaraman P (2015) Permanent His-bundle pacing is feasible, safe, and superior to right ventricular pacing in routine clinical practice. Heart Rhythm 12(2):305–312

    Article  PubMed  Google Scholar 

  136. Vijayaraman P, Naperkowski A, Subzposh FA, Abdelrahman M, Sharma PS, Oren JW, Dandamudi G, Ellenbogen KA (2018) Permanent His-bundle pacing: long-term lead performance and clinical outcomes. Heart Rhythm 15(5):696–702

    Article  PubMed  Google Scholar 

  137. Beer D, Sharma PS, Subzposh FA, Naperkowski A, Pietrasik GM, Durr B, Qureshi M, Panikkath R, Abdelrahman M, Williams BA, Hanifin JL, Zimberg R, Austin K, Macuch B, Trohman RG, Vanenkevort EA, Dandamudi G, Vijayaraman P (2019) Clinical outcomes of selective versus nonselective His bundle pacing. JACC Clinical electrophysiology 5(7):766–774

    Article  PubMed  Google Scholar 

  138. Abdelrahman M, Subzposh FA, Beer D, Durr B, Naperkowski A, Sun H, Oren JW, Dandamudi G, Vijayaraman P (2018) Clinical outcomes of His bundle pacing compared to right ventricular pacing. J Am Coll Cardiol 71(20):2319–2330

    Article  PubMed  Google Scholar 

  139. Zanon F, Ellenbogen KA, Dandamudi G, Sharma PS, Huang W, Lustgarten DL, Tung R, Tada H, Koneru JN, Bergemann T, Fagan DH, Hudnall JH, Vijayaraman P (2018) Permanent His-bundle pacing: a systematic literature review and meta-analysis. Europace 20(11):1819–1826

    Article  PubMed  Google Scholar 

  140. Vijayaraman P, Dandamudi G, Lustgarten D, Ellenbogen KA (2017) Permanent His bundle pacing: electrophysiological and echocardiographic observations from long-term follow-up. Pacing Clin Electrophysiol 40(7):883–891

    Article  PubMed  Google Scholar 

  141. Catanzariti D, Maines M, Cemin C, Broso G, Marotta T, Vergara G (2006) Permanent direct his bundle pacing does not induce ventricular dyssynchrony unlike conventional right ventricular apical pacing. An intrapatient acute comparison study. J Interv Card Electrophysiol 16(2):81–92

    Article  PubMed  Google Scholar 

  142. Ji L, Hu W, Yao J, Yu J, Chen C, Yong Y, Zhou L, Xu D (2010) Acute mechanical effect of right ventricular pacing at different sites using velocity vector imaging. Echocardiography 27(10):1219–1227

    Article  PubMed  Google Scholar 

  143. Shan P, Su L, Zhou X, Wu S, Xu L, Xiao F, Zhou X, Ellenbogen KA, Huang W (2018) Beneficial effects of upgrading to His bundle pacing in chronically paced patients with left ventricular ejection fraction <50. Heart Rhythm 15(3):405–412

    Article  PubMed  Google Scholar 

  144. Wood MA, Brown-Mahoney C, Kay GN, Ellenbogen KA (2000) Clinical outcomes after ablation and pacing therapy for atrial fibrillation : a meta-analysis. Circulation 101(10):1138–1144

    Article  CAS  PubMed  Google Scholar 

  145. Huang W et al (2017) Benefits of permanent His bundle pacing combined with atrioventricular node ablation in atrial fibrillation patients with heart failure with both preserved and reduced left ventricular ejection fraction. J Am Heart Assoc:6(4)

  146. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L, Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549

    Article  CAS  PubMed  Google Scholar 

  147. Arnold AD, Shun-Shin MJ, Keene D, Howard JP, Sohaib SMA, Wright IJ, Cole GD, Qureshi NA, Lefroy DC, Koa-Wing M, Linton NWF, Lim PB, Peters NS, Davies DW, Muthumala A, Tanner M, Ellenbogen KA, Kanagaratnam P, Francis DP, Whinnett ZI (2018) His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block. J Am Coll Cardiol 72(24):3112–3122

    Article  PubMed  PubMed Central  Google Scholar 

  148. Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7–11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Buckberg.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, A., Athanasuleas, C. & Buckberg, G. How His bundle pacing prevents and reverses heart failure induced by right ventricular pacing. Heart Fail Rev 26, 1311–1324 (2021). https://doi.org/10.1007/s10741-020-09962-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09962-8

Keywords

Navigation