Skip to main content
Log in

The role and molecular mechanism of epigenetics in cardiac hypertrophy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy is a significant risk factor for cardiovascular disease, including heart failure, arrhythmia, and sudden death. Cardiac hypertrophy involves both embryonic gene expression and transcriptional reprogramming, which are tightly regulated by epigenetic mechanisms. An increasing number of studies have demonstrated that epigenetics plays an influential role in the occurrence and development of cardiac hypertrophy. Here, we summarize the latest research progress on epigenetics in cardiac hypertrophy involving DNA methylation, histone modification, and non-coding RNA, to help understand the mechanism of epigenetics in cardiac hypertrophy. The expression of both embryonic and functional genes can be precisely regulated by epigenetic mechanisms during cardiac hypertrophy, providing a substantial number of therapeutic targets. Thus, epigenetic treatment is expected to become a novel therapeutic strategy for cardiac hypertrophy. According to the research performed to date, epigenetic mechanisms associated with cardiac hypertrophy remain far from completely understood. Therefore, epigenetic mechanisms require further exploration to improve the prevention, diagnosis, and treatment of cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chaer:

cardiac hypertrophy–associated epigenetic regulator

Csx/Nkx2.5:

NK2 homeobox 5

DNMT:

DNA methyltransferase

ET-1:

endothelin-1

GATA4:

GATA binding protein 4

HAT:

histone acetyltransferase

HDAC:

histone deacetylase

HMT:

histone methyltransferase

H3K4me3:

H3-lysine-4 trimethylation

H3K4me2:

H3-lysine-4 dimethylation

H3K9me1:

H3-lysine-9 monomethylation

H3K9me2:

H3-lysine-9 dimethylation

H3K9me3:

H3-lysine-9 trimethylation

H3S10:

histone H3 serine-10

MEF2:

myocyte enhancer factor-2

Mhrt:

myosin heavy chain associated RNA transcript

Ncx1:

solute carrier family 8 member A1

TET:

ten-eleven translocation

TAC:

transverse aortic constriction

References

  1. Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839. https://doi.org/10.1016/j.cell.2016.07.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khyzha N, Alizada A, Wilson MD, Fish JE (2017) Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med 23(4):332–347. https://doi.org/10.1016/j.molmed.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  3. Keating ST, Plutzky J, El-Osta A (2016) Epigenetic changes in diabetes and cardiovascular risk. Circ Res 118(11):1706–1722. https://doi.org/10.1161/CIRCRESAHA.116.306819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gamen E, Seeger W, Pullamsetti SS (2016) The emerging role of epigenetics in pulmonary hypertension. Eur Respir J 48(3):903–917. https://doi.org/10.1183/13993003.01714-2015

    Article  CAS  PubMed  Google Scholar 

  5. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109(13):1580–1589. https://doi.org/10.1161/01.CIR.0000120390.68287.BB

    Article  PubMed  Google Scholar 

  6. Cotecchia S, Del Vescovo CD, Colella M, Caso S, Diviani D (2015) The alpha1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications. Cell Signal 27(10):1984–1993. https://doi.org/10.1016/j.cellsig.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  7. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488. https://doi.org/10.1016/s0092-8674(02)00861-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MVG, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. https://doi.org/10.1038/nm1582

    Article  CAS  PubMed  Google Scholar 

  9. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481. https://doi.org/10.1038/nature12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257. https://doi.org/10.1016/s0092-8674(00)81656-6

    Article  CAS  PubMed  Google Scholar 

  11. Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science (New York, NY) 294(5551):2536–2539. https://doi.org/10.1126/science.1065848

    Article  CAS  Google Scholar 

  12. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279(26):27816–27823. https://doi.org/10.1074/jbc.M400181200

    Article  CAS  PubMed  Google Scholar 

  13. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  14. Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Würch A, Bönisch U, Günther S, Backofen R, Fleischmann BK, Schübeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. https://doi.org/10.1038/ncomms6288

    Article  CAS  PubMed  Google Scholar 

  15. Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, Zhang L (2014) Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res 101(3):373–382. https://doi.org/10.1093/cvr/cvt264

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Yan W, Ji X, Yue H, Li G, Sang N (2018) Maternal NO2 exposure induces cardiac hypertrophy in male offspring via ROS-HIF-1alpha transcriptional regulation and aberrant DNA methylation modification of Csx/Nkx2.5. Arch Toxicol 92(4):1563–1579. https://doi.org/10.1007/s00204-018-2166-3

    Article  CAS  PubMed  Google Scholar 

  17. McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277. https://doi.org/10.1016/b978-0-12-387786-4.00008-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yilbas AE, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, Chen J, Li Q (2014) Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem 2:12. https://doi.org/10.3389/fchem.2014.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warren SA, Terada R, Briggs LE, Cole-Jeffrey CT, Chien WM, Seki T, Weinberg EO, Yang TP, Chin MT, Bungert J, Kasahara H (2011) Differential role of Nkx2-5 in activation of the atrial natriuretic factor gene in the developing versus failing heart. Mol Cell Biol 31(22):4633–4645. https://doi.org/10.1128/mcb.05940-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaturvedi P, Tyagi SC (2016) Epigenetic silencing of TIMP4 in heart failure. J Cell Mol Med 20(11):2089–2101. https://doi.org/10.1111/jcmm.12901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osadchii OE (2007) Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 12(1):66–86. https://doi.org/10.1007/s10741-007-9007-4

    Article  CAS  PubMed  Google Scholar 

  22. Fang X, Robinson J, Wang-Hu J, Jiang L, Freeman DA, Rivkees SA, Wendler CC (2015) cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol 309(6):C425–C436. https://doi.org/10.1152/ajpcell.00058.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sasaki K, Hara S, Yamakami R, Sato Y, Hasegawa S, Kono T, Morohaku K, Obata Y (2019) Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice. Mol Reprod Dev. https://doi.org/10.1002/mrd.23137

  24. Vujic A, Robinson EL, Ito M, Haider S, Ackers-Johnson M, See K, Methner C, Figg N, Brien P, Roderick HL, Skepper J, Ferguson-Smith A, Foo RS (2015) Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J Mol Cell Cardiol 82:174–183. https://doi.org/10.1016/j.yjmcc.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  25. Han P, Li W, Yang J, Shang C, Lin C-H, Cheng W, Hang CT, Cheng H-L, Chen C-H, Wong J, Xiong Y, Zhao M, Drakos SG, Ghetti A, Li DY, Bernstein D, Chen H-SV, Quertermous T, Chang C-P (2016) Epigenetic response to environmental stress: assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts. Biochim Biophys Acta 1863(7 Pt B):1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciccarone F, Castelli S, Ioannilli L, Ciriolo MR (2019) High dietary fat intake affects DNA methylation/hydroxymethylation in mouse heart: epigenetic hints for obesity-related cardiac dysfunction. Mol Nutr Food Res 63(4):e1800970. https://doi.org/10.1002/mnfr.201800970

    Article  CAS  PubMed  Google Scholar 

  27. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science (New York, NY) 320(5880):1224–1229. https://doi.org/10.1126/science.1153252

    Article  CAS  Google Scholar 

  28. Mayer SC, Gilsbach R, Preissl S, Monroy Ordonez EB, Schnick T, Beetz N, Lother A, Rommel C, Ihle H, Bugger H, Ruhle F, Schrepper A, Schwarzer M, Heilmann C, Bonisch U, Gupta SK, Wilpert J, Kretz O, von Elverfeldt D, Orth J, Aktories K, Beyersdorf F, Bode C, Stiller B, Kruger M, Thum T, Doenst T, Stoll M, Hein L (2015) Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res 117(7):622–633. https://doi.org/10.1161/circresaha.115.306721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Papait R, Serio S, Pagiatakis C, Rusconi F, Carullo P, Mazzola M, Salvarani N, Miragoli M, Condorelli G (2017) Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation 136(13):1233–1246. https://doi.org/10.1161/circulationaha.117.028561

    Article  CAS  PubMed  Google Scholar 

  30. Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, Agrawal A, Bergmann O, Sjaastad I, Reik W, Roderick HL (2017) The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J Clin Invest 127(1):335–348. https://doi.org/10.1172/JCI88353

    Article  PubMed  Google Scholar 

  31. Wang S, Wang C, Turdi S, Richmond KL, Zhang Y, Ren J (2018) ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1alpha deacetylation. Int J Obes 42(5):1073–1087. https://doi.org/10.1038/s41366-018-0030-4

    Article  CAS  Google Scholar 

  32. Weng X, Yu L, Liang P, Li L, Dai X, Zhou B, Wu X, Xu H, Fang M, Chen Q, Xu Y (2015) A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 82:48–58. https://doi.org/10.1016/j.yjmcc.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  33. Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, Yuzyuk TN, Cox JE, Kumar A, Lozier BK, Wang L, Llana JG, Sabry AD, Cawley KM, Barton DW, Han YH, Boudina S, Fiehn O, Tucker HO, Zaitsev AV, Franklin S (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A 115(33):E7871–e7880. https://doi.org/10.1073/pnas.1800680115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franklin S, Kimball T, Rasmussen TL, Rosa-Garrido M, Chen H, Tran T, Miller MR, Gray R, Jiang S, Ren S, Wang Y, Tucker HO, Vondriska TM (2016) The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am J Phys Heart Circ Phys 311(5):H1234–h1247. https://doi.org/10.1152/ajpheart.00235.2016

    Article  Google Scholar 

  35. Yu L, Yang G, Weng X, Liang P, Li L, Li J, Fan Z, Tian W, Wu X, Xu H, Fang M, Ji Y, Li Y, Chen Q, Xu Y (2015) Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice. Arterioscler Thromb Vasc Biol 35(5):1207–1217. https://doi.org/10.1161/atvbaha.115.305230

    Article  CAS  PubMed  Google Scholar 

  36. Stein AB, Goonewardena SN, Jones TA, Prusick PJ, Bazzi AA, Belyavskaya JM, McCoskey MM, Dandar RA (2015) The PTIP-associated histone methyltransferase complex prevents stress-induced maladaptive cardiac remodeling. PLoS One 10(5):e0127839. https://doi.org/10.1371/journal.pone.0127839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou XL, Zhu RR, Wu X, Xu H, Li YY, Xu QR, Liu S, Huang H, Xu X, Wan L, Wu QC, Liu JC (2019) NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2. J Cell Mol Med 23(1):568–575. https://doi.org/10.1111/jcmm.13961

    Article  CAS  PubMed  Google Scholar 

  38. Rosales W, Lizcano F (2018) The histone demethylase JMJD2A modulates the induction of hypertrophy markers in iPSC-derived cardiomyocytes. Front Genet 9:14. https://doi.org/10.3389/fgene.2018.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X, Tian J (2019) In utero exposure to PM2.5 during gestation caused adult cardiac hypertrophy through histone acetylation modification. J Cell Biochem 120(3):4375–4384. https://doi.org/10.1002/jcb.27723

    Article  CAS  PubMed  Google Scholar 

  40. Qiao W, Zhang W, Gai Y, Zhao L, Fan J (2014) The histone acetyltransferase MOF overexpression blunts cardiac hypertrophy by targeting ROS in mice. Biochem Biophys Res Commun 448(4):379–384. https://doi.org/10.1016/j.bbrc.2014.04.112

    Article  CAS  PubMed  Google Scholar 

  41. Morales CR, Li DL, Pedrozo Z, May HI, Jiang N, Kyrychenko V, Cho GW, Kim SY, Wang ZV, Rotter D, Rothermel BA, Schneider JW, Lavandero S, Gillette TG, Hill JA (2016) Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Sci Sign 9(422):ra34. https://doi.org/10.1126/scisignal.aad5736

    Article  CAS  Google Scholar 

  42. Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N, Kim JK, Kim KK, Epstein JA, Kook H (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113(1):51–59. https://doi.org/10.1161/circulationaha.105.559724

    Article  CAS  PubMed  Google Scholar 

  43. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13(3):324–331. https://doi.org/10.1038/nm1552

    Article  PubMed  Google Scholar 

  44. Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118(11):3588–3597. https://doi.org/10.1172/jci35847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, Wong J, Seto E, Yang XJ (2007) Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27(4):1280–1295. https://doi.org/10.1128/mcb.00882-06

    Article  CAS  PubMed  Google Scholar 

  46. Zhang CL, McKinsey TA, Olson EN (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22(20):7302–7312. https://doi.org/10.1128/mcb.22.20.7302-7312.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song K, Backs J, McAnally J, Qi X, Gerard RD, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2006) The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125(3):453–466. https://doi.org/10.1016/j.cell.2006.02.048

    Article  CAS  PubMed  Google Scholar 

  48. Tang X, Chen XF, Wang NY, Wang XM, Liang ST, Zheng W, Lu YB, Zhao X, Hao DL, Zhang ZQ, Zou MH, Liu DP, Chen HZ (2017) SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation 136(21):2051–2067. https://doi.org/10.1161/circulationaha.117.028728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo L, Yin A, Zhang Q, Zhong T, O'Rourke ST, Sun C (2017) Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Phys Heart Circ Phys 312(5):H980–h991. https://doi.org/10.1152/ajpheart.00768.2016

    Article  Google Scholar 

  50. Li Z, Zhang X, Guo Z, Zhong Y, Wang P, Li J, Li Z, Liu P (2018) SIRT6 suppresses NFATc4 expression and activation in cardiomyocyte hypertrophy. Front Pharmacol 9:1519. https://doi.org/10.3389/fphar.2018.01519

    Article  CAS  PubMed  Google Scholar 

  51. Awad S, Al-Haffar KM, Marashly Q, Quijada P, Kunhi M, Al-Yacoub N, Wade FS, Mohammed SF, Al-Dayel F, Sutherland G, Assiri A, Sussman M, Bers D, Al-Habeeb W, Poizat C (2015) Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress. J Pathol 235(4):606–618. https://doi.org/10.1002/path.4489

    Article  CAS  PubMed  Google Scholar 

  52. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7(9):715–727. https://doi.org/10.1038/nrg1945

    Article  CAS  PubMed  Google Scholar 

  53. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Viganò V, Stirparo GG, Latronico MV, Hasenfuss G, Chen J, Condorelli G (2013) Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 110(50):20164–20169. https://doi.org/10.1073/pnas.1315155110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krauss V (2008) Glimpses of evolution: heterochromatic histone H3K9 methyltransferases left its marks behind. Genetica 133(1):93–106. https://doi.org/10.1007/s10709-007-9184-z

    Article  CAS  PubMed  Google Scholar 

  55. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, Nakagawa O, Srivastava D (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31(1):25–32. https://doi.org/10.1038/ng866

    Article  CAS  PubMed  Google Scholar 

  56. Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y, Li L, Zhang T, Zhou B, Wu X, Xu H, Fang M, Gao Y, Chen Q, Xu Y (2015) Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol 80:23–33. https://doi.org/10.1016/j.yjmcc.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  57. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266. https://doi.org/10.1038/nsmb.2470

    Article  CAS  PubMed  Google Scholar 

  58. de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749. https://doi.org/10.1042/BJ20021321

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hasan S, Hottiger MO (2002) Histone acetyl transferases: a role in DNA repair and DNA replication. J Mol Med (Berlin, Germany) 80(8):463–474. https://doi.org/10.1007/s00109-002-0341-7

    Article  CAS  Google Scholar 

  60. Gregoretti IV, Lee Y-M, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31. https://doi.org/10.1016/j.jmb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  61. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277(28):25748–25755. https://doi.org/10.1074/jbc.M111871200

    Article  CAS  PubMed  Google Scholar 

  62. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24(19):8467–8476. https://doi.org/10.1128/MCB.24.19.8467-8476.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123(3):1359–1370. https://doi.org/10.1172/jci61084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chandrasekaran S, Peterson RE, Mani SK, Addy B, Buchholz AL, Xu L, Thiyagarajan T, Kasiganesan H, Kern CB, Menick DR (2009) Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes. FASEB J 23(11):3851–3864. https://doi.org/10.1096/fj.09-132415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun W, Liu C, Chen Q, Liu N, Yan Y, Liu B (2018) SIRT3: a new regulator of cardiovascular diseases. Oxidative Med Cell Longev 2018:7293861. https://doi.org/10.1155/2018/7293861

    Article  CAS  Google Scholar 

  66. Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, Zhang M, Bin Z, Jin Z, Yu S, Yang Y, Wang H (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep 7:41337. https://doi.org/10.1038/srep41337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2(12):914–923. https://doi.org/10.18632/aging.100252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Planavila A, Iglesias R, Giralt M, Villarroya F (2011) Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res 90(2):276–284. https://doi.org/10.1093/cvr/cvq376

    Article  CAS  PubMed  Google Scholar 

  69. Lu Y, Wang YD, Wang XY, Chen H, Cai ZJ, Xiang MX (2016) SIRT3 in cardiovascular diseases: emerging roles and therapeutic implications. Int J Cardiol 220:700–705. https://doi.org/10.1016/j.ijcard.2016.06.236

    Article  PubMed  Google Scholar 

  70. Bode AM, Dong Z (2005) Inducible covalent posttranslational modification of histone H3. Science’s STKE 2005(281):re4-re4. https://doi.org/10.1126/stke.2812005re4

    Article  Google Scholar 

  71. Liew CC, Sole MJ (1978) Studies of nuclear proteins in the heart of the cardiomyopathic Syrian hamster--phosphorylation of histones. J Mol Cell Cardiol 10(9):847–855. https://doi.org/10.1016/0022-2828(78)90393-0

    Article  CAS  PubMed  Google Scholar 

  72. Awad S, Kunhi M, Little GH, Bai Y, An W, Bers D, Kedes L, Poizat C (2013) Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res 41(16):7656–7672. https://doi.org/10.1093/nar/gkt500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154(3):490–503. https://doi.org/10.1016/j.cell.2013.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mehrotra A, Joe B, de la Serna IL (2013) SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J Cell Physiol 228(12):2337–2342. https://doi.org/10.1002/jcp.24404

    Article  CAS  PubMed  Google Scholar 

  75. Chang L, Kiriazis H, Gao X-M, Du X-J, El-Osta A (2011) Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities. Epigenetics 6(6):760–768. https://doi.org/10.4161/epi.6.6.16007

    Article  CAS  PubMed  Google Scholar 

  76. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466(7302):62–67. https://doi.org/10.1038/nature09130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Berlo JH (2015) Chromatin remodeling permits cardiac hypertrophy to develop. J Mol Cell Cardiol 89(Pt B):119–121. https://doi.org/10.1016/j.yjmcc.2015.10.033

    Article  CAS  PubMed  Google Scholar 

  78. Mehta G, Kumarasamy S, Wu J, Walsh A, Liu L, Williams K, Joe B, de la Serna IL (2015) MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy. J Mol Cell Cardiol 88:101–110. https://doi.org/10.1016/j.yjmcc.2015.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cui H, Schlesinger J, Schoenhals S, Tonjes M, Dunkel I, Meierhofer D, Cano E, Schulz K, Berger MF, Haack T, Abdelilah-Seyfried S, Bulyk ML, Sauer S, Sperling SR (2016) Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res 44(6):2538–2553. https://doi.org/10.1093/nar/gkv1244

    Article  PubMed  Google Scholar 

  80. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. https://doi.org/10.1038/ng.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joladarashi D, Thandavarayan RA, Babu SS, Krishnamurthy P (2014) Small engine, big power: microRNAs as regulators of cardiac diseases and regeneration. Int J Mol Sci 15(9):15891–15911. https://doi.org/10.3390/ijms150915891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR, Pu WT (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29(8):2193–2204. https://doi.org/10.1128/mcb.01222-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, Thum T, Laggerbauer B, Engelhardt S (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127(21):2097–2106. https://doi.org/10.1161/circulationaha.112.000882

    Article  CAS  PubMed  Google Scholar 

  84. Duan Y, Zhou B, Su H, Liu Y, Du C (2013) miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp Cell Res 319(3):173–184. https://doi.org/10.1016/j.yexcr.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  85. Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J (2011) Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108(3):305–313. https://doi.org/10.1161/circresaha.110.228437

    Article  CAS  PubMed  Google Scholar 

  86. Wei L, Yuan M, Zhou R, Bai Q, Zhang W, Zhang M, Huang Y, Shi L (2015) MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a. J Cardiovasc Pharmacol 65(4):357–363. https://doi.org/10.1097/fjc.0000000000000203

    Article  CAS  PubMed  Google Scholar 

  87. Han M, Yang Z, Sayed D, He M, Gao S, Lin L, Yoon S, Abdellatif M (2012) GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy. Cardiovasc Res 93(4):645–654. https://doi.org/10.1093/cvr/cvs001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li R, Yan G, Zhang Q, Jiang Y, Sun H, Hu Y, Sun J, Xu B (2013) miR-145 inhibits isoproterenol-induced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6. FEBS Lett 587(12):1754–1761. https://doi.org/10.1016/j.febslet.2013.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG (2012) TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One 7(8):e42316. https://doi.org/10.1371/journal.pone.0042316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, Wang DZ (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112(9):1234–1243. https://doi.org/10.1161/circresaha.112.300682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li Z, Song Y, Liu L, Hou N, An X, Zhan D, Li Y, Zhou L, Li P, Yu L, Xia J, Zhang Y, Wang J, Yang X (2017) miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ 24(7):1205–1213. https://doi.org/10.1038/cdd.2015.95

    Article  CAS  PubMed  Google Scholar 

  92. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078. https://doi.org/10.1038/ncomms2090

    Article  CAS  PubMed  Google Scholar 

  93. Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H (2014) MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 173(2):268–276. https://doi.org/10.1016/j.ijcard.2014.02.035

    Article  PubMed  Google Scholar 

  94. Song DW, Ryu JY, Kim JO, Kwon EJ, Kim DH (2014) The miR-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1. Biochem J 457(1):151–162. https://doi.org/10.1042/bj20130833

    Article  CAS  PubMed  Google Scholar 

  95. Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432(1–2):179–187. https://doi.org/10.1007/s11010-017-3008-y

    Article  CAS  PubMed  Google Scholar 

  96. Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucl Acids 10:387–397. https://doi.org/10.1016/j.omtn.2017.12.018

    Article  CAS  Google Scholar 

  97. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514(7520):102–106. https://doi.org/10.1038/nature13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 Axis. Cardiorenal Med 8(2):130–139. https://doi.org/10.1159/000487204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114(9):1377–1388. https://doi.org/10.1161/circresaha.114.302476

    Article  CAS  PubMed  Google Scholar 

  100. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra322. https://doi.org/10.1126/scitranslmed.aaf1475

    Article  CAS  Google Scholar 

  101. Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611. https://doi.org/10.1093/eurheartj/ehv713

    Article  CAS  PubMed  Google Scholar 

  102. Mathiyalagan P, Okabe J, Chang L, Su Y, Du XJ, El-Osta A (2014) The primary microRNA-208b interacts with polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res 42(2):790–803. https://doi.org/10.1093/nar/gkt896

    Article  CAS  PubMed  Google Scholar 

  103. Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22(10):1131–1139. https://doi.org/10.1038/nm.4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112(6):863–871. https://doi.org/10.1172/JCI19137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Raghunathan S, Goyal RK, Patel BM (2017) Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy. Can J Physiol Pharmacol 95(3):260–267. https://doi.org/10.1139/cjpp-2016-0542

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Nature Scientific Funding of China (No. 81672264, 81871858).

Author information

Authors and Affiliations

Authors

Contributions

Hao Lei and Danyan Xu initiated this review, read lots of literature, and wrote the manuscript. Other authors revised our first draft and provided valuable comments. All authors read the manuscript and approved it.

Corresponding author

Correspondence to Danyan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Hu, J., Sun, K. et al. The role and molecular mechanism of epigenetics in cardiac hypertrophy. Heart Fail Rev 26, 1505–1514 (2021). https://doi.org/10.1007/s10741-020-09959-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09959-3

Keywords

Navigation