Skip to main content

Advertisement

Log in

Metformin and heart failure–related outcomes in patients with or without diabetes: a systematic review of randomized controlled trials

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Metformin is considered a safe anti-hyperglycemic drug for patients with type 2 diabetes (T2D); however, information on its impact on heart failure–related outcomes remains inconclusive. The current systematic review explored evidence from randomized clinical trials (RCTs) reporting on the impact of metformin in modulating heart failure–related markers in patients with or without T2D. Electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible studies. Included studies were those assessing the use of metformin as an intervention, and also containing the comparison group on placebo, and all articles had to report on measurable heart failure–related indices in individuals with or without T2D. The modified Downs and Black checklist was used to evaluate the risk of bias. Overall, nine studies met the inclusion criteria, enrolling a total of 2486 patients. Although summarized evidence showed that metformin did not affect left ventricular function, this antidiabetic drug could improve myocardial oxygen consumption concomitant to reducing prominent markers of heart failure such as n-terminal pro-brain natriuretic peptide and low-density lipoprotein levels, inconsistently between diabetic and nondiabetic patients. Effective modulation of some heart failure–related outcomes with metformin treatment was related to its beneficial effects in ameliorating insulin resistance and blocking pro-inflammatory markers such as the aging-associated cytokine CCL11 (C-C motif chemokine ligand 11). Overall, although such beneficial effects were observed with metformin treatment, additional RCTs are necessary to improve our understanding on its modulatory effects on heart failure–related outcomes especially in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data related to search strategy, study selection, and extraction items will be made available upon request after the manuscript is published.

Abbreviations

AMPK:

5′ AMP-activated protein kinase

CAD:

coronary artery disease

CCL11:

C-C motif chemokine ligand 11

CVDs:

cardiovascular diseases

LVEF:

left ventricular ejection fraction

NT-proBNP:

n-terminal pro-brain natriuretic peptide

RCTs:

randomized controlled trials

T2D:

type 2 diabetes

References

  1. American Heart Association, Cardiovascular disease and diabetes (2019) Available at: https://www.heart.org/en/health-topics/diabetes/why-diabetes-matters/cardiovascular-disease%2D%2Ddiabetes. Accessed 9 Oct 2019

  2. Del Buono MG, Buckley L, Abbate A (2018) Primary and secondary diastolic dysfunction in heart failure with preserved ejection fraction. Am J Cardiol 122(9):1578–1587

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA (2018) Heart failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol 34(5):632–643

    Article  PubMed  Google Scholar 

  4. Gulsin GS, Athithan L, McCann GP (2019) Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab 10. https://doi.org/10.1177/2042018819834869

  5. Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M (2018) Diabetic cardiomyopathy: current and future therapies. Beyond glycemic control. Front Physiol 9:1514

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11(1):31–39

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57(4):660–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raghavan S, Vassy JL, Ho YL, Song RJ, Gagnon DR, Cho K, Wilson PWF, Phillips LS (2019) Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc 8(4):e011295

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fox CS (2010) Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc Med 20(3):90–95

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pinckard K, Baskin KK, Stanford KI (2019) Effects of exercise to improve cardiovascular health. Front Cardiovasc Med 6:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pitsavos C, Panagiotakos D, Weinem M, Stefanadis C (2006) Diet, exercise and the metabolic syndrome. Rev Diabet Stud 3(3):118–126

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C et al (2016) Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 119(5):652–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dziubak A, Wojcicka G, Wojtak A, Beltowski J (2018) Metabolic effects of metformin in the failing heart. Int J Mol Sci 19(10)

  14. El Messaoudi S, Rongen GA, de Boer RA, Riksen NP (2011) The cardioprotective effects of metformin. Curr Opin Lipidol 22(6):445–453

    Article  PubMed  CAS  Google Scholar 

  15. Eurich DT, Tsuyuki RT, Majumdar SR, McAlister FA, Lewanczuk R, Shibata MC et al (2009) Metformin treatment in diabetes and heart failure: when academic equipoise meets clinical reality. Trials 10:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. DA Luo F, Chen J, Wu P, Li X, Fang Z (2019) Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc Diabetol 18:54

    Article  PubMed  PubMed Central  Google Scholar 

  17. Halimi S, Schweizer A, Minic B, Foley J, Dejager S (2008) Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet. Vasc Health Risk Manag 4(3):481–492

    CAS  PubMed  PubMed Central  Google Scholar 

  18. DeFronzo R, Fleming GA, Chen K, Bicsak TA (2016) Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism 65(2):20–29

    Article  CAS  PubMed  Google Scholar 

  19. Griffin SJ, Leaver JK, Irving GJ (2017) Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia 60(9):1620–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    Article  PubMed  Google Scholar 

  21. Mahlangu T, Dludla PV, Nyambuya TM, Mxinwa V, Mazibuko-Mbeje SE, Cirilli I et al (2019) A systematic review on the functional role of Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. Cytokine 126:154892

    Article  PubMed  CAS  Google Scholar 

  22. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52(6):377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443

    Article  CAS  PubMed  Google Scholar 

  24. Turkmen Kemal Y, Guvener Demirag N, Yildirir A, Atar A, Dogruk Unal A, Biyiklioglu Z (2007) Effects of rosiglitazone on plasma brain natriuretic peptide levels and myocardial performance index in patients with type 2 diabetes mellitus. Acta Diabetol 44(3):149–156

    Article  CAS  PubMed  Google Scholar 

  25. van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, Bax JJ, de Roos A, Kamp O, Paulus WJ, Heine RJ, Lammertsma AA, Smit JW, Diamant M (2009) Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation 119(15):2069–2077

    Article  PubMed  CAS  Google Scholar 

  26. Wong AK, Symon R, AlZadjali MA, Ang DS, Ogston S, Choy A et al (2012) The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail 14(11):1303–1310

    Article  CAS  PubMed  Google Scholar 

  27. Haver VG, Hartman MH, Mateo Leach I, Lipsic E, Lexis CP, van Veldhuisen DJ, van Gilst W, van der Horst I, van der Harst P (2015) Leukocyte telomere length and left ventricular function after acute ST-elevation myocardial infarction: data from the glycometabolic intervention as adjunct to primary coronary intervention in ST elevation myocardial infarction (GIPS-III) trial. Clin Res Cardiol 104(10):812–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartman MHT, Prins JKB, Schurer RAJ, Lipsic E, Lexis CPH, van der Horst-Schrivers ANA, van Veldhuisen D, van der Horst I, van der Harst P (2017) Two-year follow-up of 4 months metformin treatment vs. placebo in ST-elevation myocardial infarction: data from the GIPS-III RCT. Clin Res Cardiol 106(12):939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larsen AH, Jessen N, Norrelund H, Tolbod LP, Harms HJ, Feddersen S et al (2019) A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. https://doi.org/10.1002/ejhf.1656

  30. O'Connor SR, Tully MA, Ryan B, Bradley JM, Baxter GD, McDonough SM (2015) Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic review: a comparison study. BMC Res Notes 8:224

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nyambuya TM, Dludla PV, Mxinwa V (2019) Nkambule BB (2019) obesity-induced inflammation and insulin resistance: a mini-review on T-cells. Metab Open 3:100015

    Article  Google Scholar 

  32. Machaj F, Dembowska E, Rosik J, Szostak B, Mazurek-Mochol M, Pawlik A (2019) New therapies for the treatment of heart failure: a summary of recent accomplishments. Ther Clin Risk Manag 15:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh A, Laribi S, Teerlink JR, Mebazaa A (2017) Agents with vasodilator properties in acute heart failure. Eur Heart J 38(5):317–325

    Article  CAS  PubMed  Google Scholar 

  34. Patrono C (2013) Low-dose aspirin in primary prevention: cardioprotection, chemoprevention, both, or neither? Eur Heart J 34(44):3403–3411

    Article  CAS  PubMed  Google Scholar 

  35. Dludla PV, Dias SC, Obonye N, Johnson R, Louw J, Nkambule BB (2018) A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am J Cardiovasc Drugs 18(4):283–298

    Article  CAS  PubMed  Google Scholar 

  36. Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F (2019) Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev 24(3):343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanchez-Rangel E, Inzucchi SE (2017) Metformin: clinical use in type 2 diabetes. Diabetologia 60(9):1586–1593

    Article  CAS  PubMed  Google Scholar 

  38. Rojas LB, Gomes MB (2013) Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 5(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nesti L, Natali A (2017) Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27(8):657–669

    Article  CAS  PubMed  Google Scholar 

  40. Prattichizzo F, Giuliani A, Mensà E, Sabbatinelli J, De Nigris V, Rippo MR et al (2018) Pleiotropic effects of metformin: shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res Rev 48:87–98

    Article  CAS  PubMed  Google Scholar 

  41. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60(9):1577–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253

    PubMed  PubMed Central  Google Scholar 

  43. Day EA, Ford RJ, Steinberg GR (2017) AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab 28(8):545–560

    Article  CAS  PubMed  Google Scholar 

  44. Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S, Muller C, Louw J (2016) Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol Nutr Food Res 60(4):922–934

    Article  CAS  PubMed  Google Scholar 

  45. Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L, Vanderloo SE, McAlister F (2013) Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail 6(3):395–402

    Article  CAS  PubMed  Google Scholar 

  46. Magnusson M, Melander O, Israelsson B, Grubb A, Groop L, Jovinge S (2004) Elevated plasma levels of Nt-proBNP in patients with type 2 diabetes without overt cardiovascular disease. Diabetes Care 27(8):1929–1935

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BB Nkambule is a University of KwaZulu-Natal Developing Research Innovation, Localisation and Leadership in South Africa (DRILL) fellow. DRILL, is a NIH D43 grant (D43TW010131) awarded to UKZN in 2015 to support a research training and induction program for early career academics. The content hereof is the sole responsibility of the authors and do not necessarily represent the official views of the funders.

Funding

This work was supported in part by baseline funding from the Biomedical Research and Innovation Platform of the South African Medical Research Council (SAMRC) and the National Research Foundation (Grant number 117829). PV Dludla was partially supported as a Post-Doctoral Fellow by funding from the SAMRC through its division of Research Capacity Development under the Intra-Mural Postdoctoral Fellowship Programme from funding received from the South African Treasury.

Author information

Authors and Affiliations

Authors

Contributions

PVD, TMN, BBN: concept and original draft. VM, KM: data extraction and study appraisal. PVD, TMN, RJ, SS, PO, SEM-M, KBG, VM, KM, LT, CJF, JL, BBN: writing and final approval of the manuscript.

Corresponding author

Correspondence to Phiwayinkosi V. Dludla.

Ethics declarations

The content hereof is the sole responsibility of the authors and do not necessarily represent the official views of the SAMRC or the funders.

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

This is a review of already published studies and thus it does not require ethical approval.

Consent for publication

Not applicable. No individual person’s data has been included in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 79 kb)

ESM 2

(XLS 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dludla, P.V., Nyambuya, T.M., Johnson, R. et al. Metformin and heart failure–related outcomes in patients with or without diabetes: a systematic review of randomized controlled trials. Heart Fail Rev 26, 1437–1445 (2021). https://doi.org/10.1007/s10741-020-09942-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09942-y

Keywords

Navigation