Skip to main content

Advertisement

Log in

Heart failure with preserved ejection fraction: the missing pieces in diagnostic imaging

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent phenotype affecting over half of today’s heart failure patients. With no proven therapy and no universally accepted diagnostic guideline, many HFpEF patients continue to be misdiagnosed or underdiagnosed at the early stages until the disease has progressed much further along. It is extremely difficult to diagnose the HFpEF patient, because they have a normal ejection fraction and present with non-specific symptoms such as dyspnea or exercise intolerance. To provide greater specificity, the current diagnostic criteria mandate the presence of diastolic dysfunction, where myocardial relaxation is impaired and ventricular filling pressure is elevated as a result of a hypertrophic and stiff heart. Unfortunately, diastolic dysfunction reflects late-stage structural and functional changes and offers a very narrow window, if at all, for successful intervention. In this article, we review the imaging modalities used in the current diagnostic workflow for assessing HFpEF. We also describe the most up-to-date insight into its pathophysiological basis, which attributes systemic inflammation driven by comorbidities as the initiator of disease. With this extramyocardial perspective, we provide our recommendation on new imaging targets that extend beyond the heart to enable early, accurate diagnosis of HFpEF and allow an opportunity for treating this fatal condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garg A, Virmani D, Agrawal S, Agarwal C, Sharma A, Stefanini G, Kostis JB (2017) Clinical application of biomarkers in heart failure with a preserved ejection fraction: a review. Cardiology 136(3):192–203. https://doi.org/10.1159/000450573

    Article  CAS  PubMed  Google Scholar 

  2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. New England Journal of Medicine 355:251–259

    CAS  Google Scholar 

  3. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, Hernandez AF, Fonarow GC (2012) Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation 126(1):65–75

    PubMed  Google Scholar 

  4. Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32(6):670–679. https://doi.org/10.1093/eurheartj/ehq426

    Article  PubMed  Google Scholar 

  5. Tschöpe C, Lam CSP (2012) Diastolic heart failure: what we still don’t know. Looking for new concepts, diagnostic approaches, and the role of comorbidities. Herz 37(8):875–879. https://doi.org/10.1007/s00059-012-3719-5

    Article  PubMed  Google Scholar 

  6. Ho JE, Enserro D, Brouwers FP, Kizer JR, Shah SJ, Psaty BM, Bartz TM, Santhanakrishnan R, Lee DS, Chan C, Liu K, Blaha MJ, Hillege HL, van der Harst P, van Gilst WH, Kop WJ, Gansevoort RT, Vasan RS, Gardin JM, Levy D, Gottdiener JS, de Boer RA, Larson MG (2016) Predicting heart failure with preserved and reduced ejection fraction: The International Collaboration on Heart Failure Subtypes. Circ Heart Fail 9(6). https://doi.org/10.1161/circheartfailure.115.003116

  7. Becher PM, Lindner D, Fluschnik N, Blankenberg S, Westermann D (2013) Diagnosing heart failure with preserved ejection fraction. Expert Opinion on Medical Diagnostics 7(5):463–474. https://doi.org/10.1517/17530059.2013.825246

    Article  PubMed  Google Scholar 

  8. Campbell RT, McMurray JJV (2014) Comorbidities and differential diagnosis in heart failure with preserved ejection fraction. Heart Fail Clin 10(3):481–501. https://doi.org/10.1016/j.hfc.2014.04.009

    Article  PubMed  Google Scholar 

  9. Ezekowitz JA, O’Meara E, McDonald MA, Abrams H, Chan M, Ducharme A, Giannetti N, Grzeslo A, Hamilton PG, Heckman GA, Howlett JG, Koshman SL, Lepage S, McKelvie RS, Moe GW, Rajda M, Swiggum E, Virani SA, Zieroth S, Al-Hesayen A, Cohen-Solal A, D’Astous M, De S, Estrella-Holder E, Fremes S, Green L, Haddad H, Harkness K, Hernandez AF, Kouz S, MH L, Fa M, Rose HJ, Roussin A, Sussex B (2017) 2017 Comprehensive update of the Canadian Cardiovascular Society Guidelines for the Management of Heart Failure. Canadian Journal of Cardiology 33(11):1342–1433

    Google Scholar 

  10. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbély A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28(20):2539–2550. https://doi.org/10.1093/eurheartj/ehm037

    Article  PubMed  Google Scholar 

  11. Oktay AA, Shah SJ (2015) Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Curr Cardiol Rev 11(1):42–52

    PubMed  Google Scholar 

  12. Hadano Y, Murata K, Yamamoto T, Kunichika H, Matsumoto T, Akagawa E, Sato T, Tanaka T, Nose Y, Tanaka N, Matsuzaki M (2006) Usefulness of mitral annular velocity in predicting exercise intolerance in patients with impaired left ventricular systolic function. American Journal of Cardiology 97:1025–1028

    Google Scholar 

  13. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Group ESCSD (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  14. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134(1):73–90. https://doi.org/10.1161/circulationaha.116.021884

    Article  PubMed  PubMed Central  Google Scholar 

  15. Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123(18):2006–2013; discussion 2014. https://doi.org/10.1161/circulationaha.110.954388

    Article  PubMed  PubMed Central  Google Scholar 

  16. Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW (2017) Targeting obesity and diabetes to treat heart failure with preserved ejection fraction. Front Endocrinol (Lausanne) 8:160. https://doi.org/10.3389/fendo.2017.00160

    Article  Google Scholar 

  17. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM (2018) Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation 138(2):198–205. https://doi.org/10.1161/circulationaha.118.034271

    Article  PubMed  Google Scholar 

  18. Afsar B, Rossignol P, van Heerebeek L, Paulus WJ, Damman K, Heymans S, van Empel V, Sag A, Maisel A, Kanbay M (2017) Heart failure with preserved ejection fraction: a nephrologist-directed primer. Heart Fail Rev. https://doi.org/10.1007/s10741-017-9619-2

    PubMed  Google Scholar 

  19. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, Carson PE (2011) Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 4(3):324–331. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959890

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction. comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  21. O’Meara E, de Denus S, Rouleau J-L, Desai A (2013) Circulating biomarkers in patients with heart failure and preserved ejection fraction. Curr Heart Fail Rep 10(4):350–358. https://doi.org/10.1007/s11897-013-0160-x

    Article  CAS  PubMed  Google Scholar 

  22. Hippisley-Cox J, Coupland C (2016) Diabetes treatments and risk of heart failure, cardiovascular disease, and all cause mortality: cohort study in primary care. BMJ 354:i3477. https://doi.org/10.1136/bmj.i3477

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sandesara PB, O’Neal WT, Kelli HM, Samman-Tahhan A, Hammadah M, Quyyumi AA, Sperling LS (2018) The prognostic significance of diabetes and microvascular complications in patients with heart failure with preserved ejection fraction. Diabetes Care 41(1):150–155. https://doi.org/10.2337/dc17-0755

    Article  CAS  PubMed  Google Scholar 

  24. Boonman-de Winter LJM, Cramer MJ, Hoes AW, Rutten FH (2016) Uncovering heart failure with preserved ejection fraction in patients with type 2 diabetes in primary care: time for a change. Neth Heart J 24(4):237–243. https://doi.org/10.1007/s12471-016-0809-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsujimoto T, Kajio H (2017) Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol 70(22):2739–2749. https://doi.org/10.1016/j.jacc.2017.09.1111

    Article  PubMed  Google Scholar 

  26. How to diagnose diastolic heart failure European study group on diastolic heart failure (1998). Eur Heart J 19(7):990–1003

  27. Mohammed SF, Borlaug BA, Roger VL, Mirzoyev SA, Rodeheffer RJ, Chirinos JA, Redfield MM (2012) Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community-based study. Circ Heart Fail 5(6):710–719. https://doi.org/10.1161/circheartfailure.112.968594

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hay I, Rich J, Ferber P, Burkhoff D, Maurer MS (2005) Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. Am J Physiol Heart Circ Physiol 288(3):H1203–H1208. https://doi.org/10.1152/ajpheart.00681.2004

    Article  CAS  PubMed  Google Scholar 

  29. Gladden JD, Linke WA, Redfield MM (2014) Heart failure with preserved ejection fraction. Pflugers Arch 466(6):1037–1053. https://doi.org/10.1007/s00424-014-1480-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lim SL, Lam CS, Segers VF, Brutsaert DL, De Keulenaer GW (2015) Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J 36(31):2050–2060. https://doi.org/10.1093/eurheartj/ehv132

    Article  CAS  PubMed  Google Scholar 

  31. van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, van der Velden J, Stienen GJ, Laarman GJ, Somsen A, Verheugt FW, Niessen HW, Paulus WJ (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126(7):830–839. https://doi.org/10.1161/CIRCULATIONAHA.111.076075

    Article  CAS  PubMed  Google Scholar 

  32. Borlaug BA, Olson TP, Lam CSP, Flood KS, Lerman A, Johnson BD, Redfield MM (2010) Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol 56(11):845–854. https://doi.org/10.1016/j.jacc.2010.03.077

    Article  PubMed  PubMed Central  Google Scholar 

  33. Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, Ohba K, Matsubara J, Maeda H, Horibata Y, Sakamoto K, Sugamura K, Yamamuro M, Sumida H, Kaikita K, Iwashita S, Matsui K, Kimura K, Umemura S, Ogawa H (2012) Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol 60(18):1778–1786. https://doi.org/10.1016/j.jacc.2012.07.036

    Article  PubMed  Google Scholar 

  34. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss H-P, Tschöpe C (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4(1):44–52. https://doi.org/10.1161/circheartfailure.109.931451

    Article  PubMed  Google Scholar 

  35. Lam CS, Lyass A, Kraigher-Krainer E, Massaro JM, Lee DS, Ho JE, Levy D, Redfield MM, Pieske BM, Benjamin EJ, Vasan RS (2011) Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation 124(1):24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bell DSH (2003) Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care 26(8):2433–2441

    PubMed  Google Scholar 

  37. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European heart journal cardiovascular imaging 16(3):233–270

    PubMed  Google Scholar 

  38. Hare JL, Brown JK, Marwick TH (2008) Performance of convetional echocardiographic parameters and myocardial measurements in the sequential evaluation of left ventricular function. American Journal of Cardiology 101:706–711

    Google Scholar 

  39. Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, Kutty S, Leong-Poi H, Lindner JR, Main ML, Mathias WJ, Park MM, Senior R, Villanueva F (2018) Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography Guidelines Update. Journal of the American Society of Echocardiography 31(3):241–274

    PubMed  Google Scholar 

  40. Soliman OI, Kirschbaum SW, van Dalen BM, van der Zwaan HB, Mahdavian Delavary B, Vletter WB, van Geuns RJ, Ten Cate FJ, Geleijnse ML (2008) Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. American Journal of Cardiology 102(6):778–783

    Google Scholar 

  41. Butrous H, Pai RG (2013) Heart failure with normal ejection fraction: current diagnostic and management strategies. Expert Rev Cardiovasc Ther 11(9):1179–1193. https://doi.org/10.1586/14779072.2013.827468

    Article  CAS  PubMed  Google Scholar 

  42. Gillebert TC, De Pauw M, Timmermans F (2013) Echo-doppler assessment of diastole: flow, function and haemodynamics. Heart 99:55–64

    PubMed  Google Scholar 

  43. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging 17(12):1321–1360

    PubMed  Google Scholar 

  44. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, Tschöpe C (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116(6):637–647

    PubMed  Google Scholar 

  45. Mitter SS, Shah SJ, Thomas JD (2017) A test in context: E/A and E/e' to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol 69(11):1451–1464. https://doi.org/10.1016/j.jacc.2016.12.037

    Article  PubMed  Google Scholar 

  46. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW (2009) 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol 53(15):e1–e90

    PubMed  Google Scholar 

  47. Hunt PJ, Richards AM, Nicholls MG, Yandle TG, Doughty RN, Espiner EA (1997) Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac. Clinical endocrinology 47(3):287–296

    CAS  PubMed  Google Scholar 

  48. Anjan VY, Loftus TM, Burke MA, Akhter N, Fonarow GC, Gheorghiade M, Shah SJ (2012) Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. American Journal of Cardiology 110(6):870–876

    CAS  Google Scholar 

  49. Mehra MR, Uber PA, Park MH, Scott RL, Ventura HO, Harris BC, Frohlich ED (2004) Obesity and suppressed B-type natriuretic peptide levels in heart failure. American Journal of Cardiology 43(9):1590–1595

    CAS  Google Scholar 

  50. Porter TR, Xie F (2010) Myocardial perfusion imaging with contrast ultrasound. JACC Cardiovasc Imaging 3(2):176–187. https://doi.org/10.1016/j.jcmg.2009.09.024

    Article  PubMed  Google Scholar 

  51. Rademakers FE (2003) Magnetic resonance imaging in cardiology. Lancet 361(9355):359–360

    PubMed  Google Scholar 

  52. Mertens LL, Friedberg MK (2010) Imaging the right ventricle -- current state of the art. Nat Rev Cardiol 7(10):551–563

    PubMed  Google Scholar 

  53. Hendel RC, Friedrich MG, Schulz-Menger J, Zemmrich C, Bengel F, Berman DS, Camici PG, Flamm SD, Le Guludec D, Kim R, Lombardi M, Mahmarian J, Sechtem U, Nagel E (2016) CMR first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovascular Imaging 9(11):1338–1348

    PubMed  Google Scholar 

  54. Shehata ML, Basha TA, Hayeri MR, Hartung D, Teytelboym OM, Vogel-Claussen J (2014) MR myocardial perfusion imaging: insights on techniques, analysis, interpretation, and findings. Radiographics 34(6):1636–1657

    PubMed  Google Scholar 

  55. Kanagala P, Cheng ASH, Singh A, McAdam J, Marsh A-M, Arnold JR, Squire IB, Ng LL, McCann GP (2018) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction - implications for clinical trials. Journal of Cardiovascular Magnetic Resonance 20(1):4. https://doi.org/10.1186/s12968-017-0424-9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salerno M, Kramer CM (2013) Advances in parametric mapping with CMR imaging. JACC Cardiovascular Imaging 6(7):806–822

    PubMed  PubMed Central  Google Scholar 

  57. Reiter G, Reiter C, Krauter C, Fuschsjager M, Reiter U (2018) Cardiac magnetic resonance T1 mapping. Part 1: aspects of acquisition and evaluation. European journal of radiology 109:223–234

    PubMed  Google Scholar 

  58. Zhuang B, Sirajuddin A, Wang S, Arai A, Zhao S, Lu M (2018) Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis. Heart Fail Rev 23(5):723–731

    PubMed  Google Scholar 

  59. Bohnen S, Radunski UK, Lund GK, Ojeda F, Looft Y, Senel M, Radziwolek L, Avanesov M, Tahir E, Stehning C, Schnackenburg B, Adam G, Blankenberg S, Muellerleile K (2017) Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur Heart J Cardiovasc Imaging 18(7):744–751

    CAS  PubMed  Google Scholar 

  60. Hartung D, Hueper K, Chen R, Gutberlet M, Wacker F, Meier M, Rong S, Jang MS, Bräsen JH, Gueler F (2018) T2 mapping for noninvasive assessment of interstitial edema in acute cardiac allograft rejection in a mouse model of heterotopic heart transplantation. Investigative Radiology 53(5):271–277

    PubMed  Google Scholar 

  61. Krittayaphong R, Zhang S, Saiviroonporn P, Viprakasit V, Tanapibunpon P, Rerkudom B, Yindeengam A, Wood JC (2019) Assessment of cardiac iron overload in thalassemia with MRI on 3.0-T: high-field T1, T2, and T2* quantitative parametric mapping in comparison to T2* on 1.5-T. JACC Cardiovascular Imaging 12(4):752–754

    PubMed  Google Scholar 

  62. Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, Connelly KA, Dick AJ, Wright GA (2011) Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med 66(4):1129–1141

    PubMed  Google Scholar 

  63. Paterson I, Wells GA, Ezekowitz JA, White JA, Friedrich MG, Mielniczuk LM, O’Meara E, Chow BS, DeKemp RA, Klein R, Dennie C, Dick A, Coyle D, Dwivedi G, Rajda M, Wright GA, Laine M, Hanninen H, Larose E, Connelly KA, Leong-Poi H, Howarth AG, Davies RA, Duchesne L, Yla-Herttuala S, Saraste A, Farand P, Garrard L, Tardif JC, Arnold M, Knuuti J, Beanlands R, Chan KL (2013) Routine versus selective cardiac magnetic resonance in non-ischemic heart failure - OUTSMART-HF: study protocol for a randomized controlled trial (IMAGE-HF (heart failure) project 1-B). Trials 14:332

    PubMed  PubMed Central  Google Scholar 

  64. Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M (2013) MR myocardial perfusion imaging. Radiology 266(3):701–715. https://doi.org/10.1148/radiol.12110918

    Article  PubMed  Google Scholar 

  65. Jenson S, Craig S, York G, Steel K (2013) Review of cardiac MR perfusion imaging. Journal of the American Osteopathic College of Radiology 2(2):1–7

    Google Scholar 

  66. Francis R, Kellman P, Kotecha T, Baggiano A, Norrington K, Martinez-Naharro A, Nordin S, Knight DS, Rakhit RD, Lockie T, Hawkins PN, Moon JC, Hausenloy DJ, Xue H, Hansen MS, Fontana M (2017) Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar. J Cardiovasc Magn Reson 19(1):91. https://doi.org/10.1186/s12968-017-0407-x

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cavalcante JL, Lalude OO, Schoenhagen P, Lerakis S (2016) Cardiovascular magnetic resonance imaging for structural and valvular heart disease interventions. JACC Cardiovasc Interv 9(5):399–425. https://doi.org/10.1016/j.jcin.2015.11.031

    Article  PubMed  Google Scholar 

  68. Nagao M, Yamasaki Y (2018) Cardiac strain analysis using cine magnetic resonance imaging and computed tomography. Cardiovascular Imaging Asia 2:76–84

    Google Scholar 

  69. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circulation Heart failure 3(5):588–595

    PubMed  PubMed Central  Google Scholar 

  70. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, Kass DA (2006) Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation 114(20):2138–2147

    PubMed  Google Scholar 

  71. Donal E, Thebault C, Lund LH, Kervio G, Reynaud A, Simon T, Drouet E, Nonotte E, Linde C, Daubert JC (2012) Heart failure with a preserved ejection fraction additive value of an exercise stress echocardiography. European Heart Journal Cardiovascular Imaging 13(8):656–665

    PubMed  Google Scholar 

  72. Oren O, Goldberg S (2017) Heart failure with preserved ejection fraction: diagnosis and management. Am J Med 130(5):510–516. https://doi.org/10.1016/j.amjmed.2016.12.031

    Article  PubMed  Google Scholar 

  73. Ohtani T, Mohammed SF, Yamamoto K, Dunlay SM, Weston SA, Sakata Y, Rodeheffer RJ, Roger VL, Redfield MM (2012) Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. Eur Heart J 33(14):1742–1749

    PubMed  Google Scholar 

  74. Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O’Donnell M (2001) Strain rate imaging using two-dimensional speckle tracking. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 48(4):1111–1123

    CAS  PubMed  Google Scholar 

  75. Korinek J, Wang J, Sengupta PP, Miyazaki C, Kjaergaard J, McMahon E, Abraham TP, Belohlavek M (2005) Two-dimensional strain--a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo. Journal of the American Society of Echocardiography 18(12):1247–1253

    PubMed  Google Scholar 

  76. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography. validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–798

    PubMed  Google Scholar 

  77. Petersen JW, Nazir TF, Lee L, Garvan CS, Karimi A (2013) Speckle tracking echocardiography-determined measures of global and regional left ventricular function correlate with functional capacity in patients with and without preserved ejection fraction. Cardiovascular ultrasound 11:20

    PubMed  Google Scholar 

  78. DeVore AD, McNulty S, Alenezi F, Ersboll M, Vader JM, Oh JK, Lin G, Redfield MM, Lewis G, Semigran MJ, Anstrom KJ, Hernandez AF, Velazquez EJ (2017) Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: insights from the RELAX trial. Eur J Heart Fail 19(7):893–900

    PubMed  Google Scholar 

  79. Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, Samad Z, Velazquez EJ, Sogaard P, Kisslo J (2012) Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. Journal of the American Society of Echocardiography 25(11):1195–1203

    PubMed  Google Scholar 

  80. McVeigh ER, Zerhouni EA (1991) Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180(3):677–683

    CAS  PubMed  Google Scholar 

  81. Edvardsen T, Rosen BD, Pan L, Jerosch-Herold M, Lai S, Hundley WG, Sinha S, Kronmal RA, Bluemke DA, Lima JA (2006) Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging--the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J 151(1):109–114

    PubMed  Google Scholar 

  82. Hor KN, Baumann R, Pedrizzetti G, Tonti G, Gottliebson WM, Taylor M, Benson DW, Mazur W (2011) Magnetic resonance derived myocardial strain assessment using feature tracking. Journal of Visualized Experiments: JoVE 48:2356

    Google Scholar 

  83. Evin M, Broadhouse KM, Callaghan FM, McGrath RT, Glastras S, Kozor R, Hocking SL, Lamy J, Redheuil A, Kachenoura N, Fulcher GR, Figtree GA, Grieve SM (2016) Impact of obesity and epicardial fat on early left atrial dysfunction assessed by cardiac MRI strain analysis. Cardiovascular Diabetology 15(1):164

    PubMed  PubMed Central  Google Scholar 

  84. Mahmod M, Pal N, Rayner J, Holloway C, Raman B, Dass S, Levelt E, Ariga R, Ferreira V, Banerjee R, Schneider JE, Rodgers C, Francis JM, Karamitsos TD, Frenneaux M, Ashrafian H, Neubauer S, Rider O (2018) The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance 20(1):88

    PubMed  PubMed Central  Google Scholar 

  85. Borlaug BA, Kass DA (2011) Ventricular-vascular interaction in heart failure. Cardiology clinics 29(3):447–459

    PubMed  Google Scholar 

  86. Borlaug BA, Jaber WA, Ommen SR, Lam CS, Redfield MM, Nishimura RA (2011) Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart 97(12):964–969

    PubMed  Google Scholar 

  87. Gillebert TC, Leite-Moreira AF, De Hert SG (2000) Load dependent diastolic dysfunction in heart failure. Heart Fail Rev 5:345–355

    CAS  PubMed  Google Scholar 

  88. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int 2013:235194

  89. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, Kawaguchi M, Kass DA (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38(7):2028–2034

    CAS  PubMed  Google Scholar 

  90. Gayat E, Mor-Avi V, Weinert L, Yodwut C, Lang RM (2011) Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol 301(5):H916–H923

    Google Scholar 

  91. Wong RC, Dumont CA, Austin BA, Kwon DH, Flamm SD, Thomas JD, Starling RC, Desai MY (2010) Relation of ventricular-vascular coupling to exercise capacity in ischemic cardiomyopathy: a cardiac multi-modality imaging study. The International Journal of Cardiovascular Imaging 26(2):151–159

    PubMed  Google Scholar 

  92. Witschey WR, Contijoch F, McGarvey JR, Ferrari VA, Hansen MS, Lee ME, Takebayashi S, Aoki C, Chirinos JA, Yushkevich PA, Gorman JH, Pilla JJ, Gorman RC (2014) Real-time magnetic resonance imaging technique for determining left ventricle pressure-volume loops. The annals of thoracic surgery 97(5):1597–1603

    PubMed  PubMed Central  Google Scholar 

  93. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschöpe C (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4(1):44–52

    PubMed  Google Scholar 

  94. Desai S, Haines P, Zamani P, Konda P, Shiva-Kumar P, Peddireddy S, Shekhar RC, Jain S, Kers S, Ferrari V, Chirinos J (2018) Diffuse myocardial fibrosis is greatly elevated in males with heart failure with reduced ejection fraction, but not heart failure with preserved ejection fraction. J Am Coll Cardiol 63(12 Supplement):A967. https://doi.org/10.1016/s0735-1097(14)60967-0

    Article  Google Scholar 

  95. Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A, Miller CA, Ugander M, Maanja M, Kellman P, Shah DJ, Abebe KZ, Simon MA, Quarta G, Senni M, Butler J, Diez J, Redfield MM, Gheorghiade M (2017) Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: association with baseline disease severity and subsequent outcome. JAMA cardiology 2(9):995–1006

    PubMed  PubMed Central  Google Scholar 

  96. Su MY, Lin LY, Tseng YH, Chang CC, Wu CK, Lin JL, Tseng WY (2014) CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovascular imaging 7(10):991–997

    PubMed  Google Scholar 

  97. Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA, Bonderman D, Mascherbauer J (2016) Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective cardiac magnetic resonance imaging study. Circulation, cardiovascular imaging 9(12):e005277

    Google Scholar 

  98. Helm PA, Caravan P, French BA, Jacques V, Shen L, Xu Y, Beyers RJ, Roy RJ, Kramer CM, Epstein FH (2008) Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology 247(3):788–796

    PubMed  Google Scholar 

  99. Tassali N, Bianchi A, Lux F, Raffard G, Sanchez S, Tillement O, Crémillieux Y (2016) MR imaging, targeting and characterization of pulmonary fibrosis using intra-tracheal administration of gadolinium-based nanoparticles. Contrast media and molecular imaging 11(5):396–404

    CAS  PubMed  Google Scholar 

  100. Caravan P, Das B, Dumas S, Epstein FH, Helm PA, Jacques V, Koerner S, Kolodziej A, Shen L, Sun WC, Zhang Z (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angewandte chemie 46(43):8171–8173

    CAS  PubMed  Google Scholar 

  101. Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, Lerman A, Mancia G, Oliver JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Schiffrin EL, Taddei S, Webb DJ (2005) Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds. a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 23(1):7–17

    CAS  Google Scholar 

  102. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315(17):1046–1051. https://doi.org/10.1056/NEJM198610233151702

    Article  CAS  PubMed  Google Scholar 

  103. Felmeden DC, Lip GY (2005) Endothelial function and its assessment. Expert Opin Investig Drugs 14(11):1319–1336. https://doi.org/10.1517/13543784.14.11.1319

    Article  CAS  PubMed  Google Scholar 

  104. Berman DS, Kiat H, Van Train KF, Friedman J, Garcia EV, Maddahi J (1990) Comparison of SPECT using technetium-99m agents and thallium-201 and PET for the assessment of myocardial perfusion and viability. American Journal of Cardiology 66(13):72E–79E

    CAS  Google Scholar 

  105. Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN (2011) Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN. Cardiovascular Diabetology 10:75

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, Deeb M, Wolfe EJ, Wieland DM (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82(2):457–464

    CAS  PubMed  Google Scholar 

  107. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, Di Carli MF (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39(10):840–849

    CAS  PubMed  Google Scholar 

  108. Srivaratharajah K, Coutinho T, deKemp R, Liu P, Haddad H, Stadnick E, Davies RA, Chih S, Dwivedi G, Guo A, Wells GA, Bernick J, Beanlands R, Mielniczuk LM (2016) Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail 9(7):e002562

    PubMed  Google Scholar 

  109. Gillies RJ, Bhujwalla ZM, Evelhoch J, Garwood M, Neeman M, Robinson SP, Sotak CH, Van Der Sanden B (2000) Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2(1–2):139–151

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ganesh T, Estrada M, Yeger H, Duffin J, Margaret Cheng H-L (2017) A non-invasive magnetic resonance imaging approach for assessment of real-time microcirculation dynamics. Sci Rep 7(1):7468. https://doi.org/10.1038/s41598-017-06983-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ganesh T, Zakher E, Estrada M, Cheng HL (2018) Assessment of microvascular dysfunction in acute limb ischemia-reperfusion injury. Journal of magnetic resonance imaging 49(4):1174–1185

    PubMed  Google Scholar 

  112. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, van Marwick S, Kunze KP, Meinicke A, Götze K, Kastrati A, Langwieser N, Ibrahim T, Nahrendorf M, Schwaiger M, Laugwitz K-L (2016) Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circulation: Cardiovascular Imaging 9(4):1–13

    Google Scholar 

  113. Werner RA, Wakabayashi H, Bauer J, Schütz C, Zechmeister C, Hayakawa N, Javadi MS, Lapa C, Jahns R, Ergün S, Jahns V, Higuchi T (2018) Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur Heart J Cardiovasc Imaging 20(4):467–474

    Google Scholar 

Download references

Funding sources

This work was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada (#355795) and the Ted Rogers Centre for Heart Research. S. L. is funded by a Heart & Stroke Richard Lewar Centre of Excellence Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ling Margaret Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loai, S., Cheng, HL.M. Heart failure with preserved ejection fraction: the missing pieces in diagnostic imaging. Heart Fail Rev 25, 305–319 (2020). https://doi.org/10.1007/s10741-019-09836-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-019-09836-8

Keywords

Navigation