Skip to main content
Log in

The paradox of left ventricular assist device unloading and myocardial recovery in end-stage dilated cardiomyopathy: implications for heart failure in the elderly

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) is a common debilitating condition with limited therapeutic options besides heart transplantation or palliation. It is characterized by maladaptive remodeling of cardiomyocytes, extracellular collagen matrix (ECCM) and left ventricular (LV) geometry which contributes to further dysfunction. LV assist devices (LVADs) can reverse adverse remodeling in end-stage DCM. However, there is a disconnect between the benefits of prolonged unloading with LVAD at molecular and cellular levels and the low rate of bridge to recovery (BTR). Potential explanations for this paradox include insufficient reverse ECCM remodeling and/or excessive reverse cardiomyocyte remodeling with atrophy. LVAD therapy is associated with decreased collagen turnover and cross-linking and increased tissue angiotensin II (AngII), whereas LVAD combined with angiotensin-converting enzyme inhibition results in decreased tissue AngII and collagen cross-linking, normalizes LV end-diastolic pressure volume relationships and is associated with modestly higher rates of BTR. Much remains to be learned about ventricular reverse remodeling after LVAD. This can be facilitated through systematic collection and comparison of recovered and unrecovered myocardium. Importantly, vigilant monitoring for ventricular recovery among LVAD patients is needed, particularly in older patients receiving LVAD for destination therapy. In addition, prospective multicenter trials are needed to clarify the potential benefit of concomitant heart failure therapy with selective β2 agonism on ventricular recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, Ulisney KL, Baldwin JT, Young JB (2011) Third INTERMACS Annual Report: the evolution of destination therapy in the United States. J Heart Lung Transpl 30(2):115–123. doi:10.1016/j.healun.2010.12.001

    Google Scholar 

  2. Burkhoff D, Klotz S, Mancini DM (2006) LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail 12(3):227–239

    PubMed  Google Scholar 

  3. Deng MC, Edwards LB, Hertz MI, Rowe AW, Keck BM, Kormos R, Naftel DC, Kirklin JK, Taylor DO (2005) Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report–—2005. J Heart Lung Transpl 24(9):1182–1187

    Google Scholar 

  4. Katz AM (2003) Pathophysiology of heart failure: identifying targets for pharmacotherapy. Med Clin North Am 87(2):303–316

    PubMed  CAS  Google Scholar 

  5. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):145–153

    PubMed  CAS  Google Scholar 

  6. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717

    PubMed  CAS  Google Scholar 

  7. MERIT-HF Study Group (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353(9169):2001–2007

    Google Scholar 

  8. Kobayashi M, Furukawa Y, Chiba S (1978) Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol 50(1):17–25

    PubMed  CAS  Google Scholar 

  9. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA (2000) Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 101(10):1130–1137

    PubMed  CAS  Google Scholar 

  10. Zhu YC, Zhu YZ, Gohlke P, Stauss HM, Unger T (1997) Effects of angiotensin-converting enzyme inhibition and angiotensin II AT1 receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am J Cardiol 80(3A):110A–117A

    PubMed  CAS  Google Scholar 

  11. Sabbah HN (2004) Biologic rationale for the use of beta-blockers in the treatment of heart failure. Heart Fail Rev 9(2):91–97

    PubMed  CAS  Google Scholar 

  12. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    PubMed  CAS  Google Scholar 

  13. Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K et al (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86(6):1810–1818

    PubMed  CAS  Google Scholar 

  14. Haft JI (1974) Cardiovascular injury induced by sympathetic catecholamines. Prog Cardiovasc Dis 17(1):73–86

    PubMed  CAS  Google Scholar 

  15. Cavallari LH, Momary KM, Groo VL, Viana MA, Camp JR, Stamos TD (2007) Association of beta-blocker dose with serum procollagen concentrations and cardiac response to spironolactone in patients with heart failure. Pharmacotherapy 27(6):801–812

    PubMed  CAS  Google Scholar 

  16. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    PubMed  CAS  Google Scholar 

  17. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109(13):1580–1589

    PubMed  Google Scholar 

  18. Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y (1997) Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80(1):139–146

    PubMed  CAS  Google Scholar 

  19. Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N, Murakami K, Kadowaki T, Yazaki Y (1998) Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 273(37):24037–24043

    PubMed  CAS  Google Scholar 

  20. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS (1998) Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 40(2):352–363

    PubMed  CAS  Google Scholar 

  21. Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571

    PubMed  CAS  Google Scholar 

  22. Esposito G, Rapacciuolo A, Naga Prasad SV, Rockman HA (2002) Cardiac hypertrophy: role of G protein-coupled receptors. J Card Fail 8(6 Suppl):S409–S414

    PubMed  CAS  Google Scholar 

  23. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H (2002) Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359(9311):995–1003

    PubMed  CAS  Google Scholar 

  24. Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ (1995) Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 25(5):1154–1161

    PubMed  CAS  Google Scholar 

  25. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3(1):1–30

    PubMed  CAS  Google Scholar 

  26. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II—induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73(3):413–423

    PubMed  CAS  Google Scholar 

  27. Lijnen P, Petrov V (2000) Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol 32(6):865–879

    PubMed  CAS  Google Scholar 

  28. Lijnen P, Petrov V (1999) Antagonism of the renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods Find Exp Clin Pharmacol 21(5):363–374

    PubMed  CAS  Google Scholar 

  29. Izawa H, Murohara T, Nagata K, Isobe S, Asano H, Amano T, Ichihara S, Kato T, Ohshima S, Murase Y, Iino S, Obata K, Noda A, Okumura K, Yokota M (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112(19):2940–2945

    PubMed  CAS  Google Scholar 

  30. Pilz B, Shagdarsuren E, Wellner M, Fiebeler A, Dechend R, Gratze P, Meiners S, Feldman DL, Webb RL, Garrelds IM, Jan Danser AH, Luft FC, Muller DN (2005) Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46(3):569–576

    PubMed  CAS  Google Scholar 

  31. Mann DL, Taegtmeyer H (2001) Dynamic regulation of the extracellular matrix after mechanical unloading of the failing human heart: recovering the missing link in left ventricular remodeling. Circulation 104(10):1089–1091

    PubMed  CAS  Google Scholar 

  32. Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, Oz MC, D’Armiento J, Burkhoff D (2005) Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 112(3):364–374

    PubMed  CAS  Google Scholar 

  33. Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ (1997) Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96(6):1991–1998

    PubMed  CAS  Google Scholar 

  34. Motz W, Strauer BE (1989) Left ventricular function and collagen content after regression of hypertensive hypertrophy. Hypertension 13(1):43–50

    PubMed  CAS  Google Scholar 

  35. Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, Norton GR, Woodiwiss AJ (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57(3):632–641

    PubMed  CAS  Google Scholar 

  36. Mann DL, Spinale FG (1998) Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 98(17):1699–1702

    PubMed  CAS  Google Scholar 

  37. Wohlschlaeger J, Schmitz KJ, Schmid C, Schmid KW, Keul P, Takeda A, Weis S, Levkau B, Baba HA (2005) Reverse remodeling following insertion of left ventricular assist devices (LVAD): a review of the morphological and molecular changes. Cardiovasc Res 68(3):376–386

    PubMed  CAS  Google Scholar 

  38. Margulies KB (2002) Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments. J Card Fail 8(6 Suppl):S500–S505

    PubMed  Google Scholar 

  39. Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, Wang Y (2005) p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111(19):2494–2502

    PubMed  CAS  Google Scholar 

  40. Milting H, Kassner A, Arusoglu L, Meyer HE, Morshuis M, Brendel R, Klauke B, El Banayosy A, Korfer R (2006) Influence of ACE-inhibition and mechanical unloading on the regulation of extracellular matrix proteins in the myocardium of heart transplantation candidates bridged by ventricular assist devices. Eur J Heart Fail 8(3):278–283

    PubMed  CAS  Google Scholar 

  41. Parish RC, Evans JD (2008) Inflammation in chronic heart failure. Ann Pharmacother 42(7):1002–1016

    PubMed  CAS  Google Scholar 

  42. Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65:81–101

    PubMed  CAS  Google Scholar 

  43. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A, Dawood F, Wen WH, Shou Z, Liu P (1999) Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation 99(11):1492–1498

    PubMed  CAS  Google Scholar 

  44. Nelson SK, Wong GH, McCord JM (1995) Leukemia inhibitory factor and tumor necrosis factor induce manganese superoxide dismutase and protect rabbit hearts from reperfusion injury. J Mol Cell Cardiol 27(1):223–229

    PubMed  CAS  Google Scholar 

  45. Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K, Kishimoto T (1997) Signals through gp130 upregulate bcl-x gene expression via STAT1-binding cis-element in cardiac myocytes. J Clin Invest 99(12):2898–2905

    PubMed  CAS  Google Scholar 

  46. Eddy LJ, Goeddel DV, Wong GH (1992) Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 184(2):1056–1059

    PubMed  CAS  Google Scholar 

  47. Nakano M, Knowlton AA, Yokoyama T, Lesslauer W, Mann DL (1996) Tumor necrosis factor-alpha-induced expression of heat shock protein 72 in adult feline cardiac myocytes. Am J Physiol 270(4 Pt 2):H1231–H1239

    PubMed  CAS  Google Scholar 

  48. Low-Friedrich I, Weisensee D, Mitrou P, Schoeppe W (1992) Cytokines induce stress protein formation in cultured cardiac myocytes. Basic Res Cardiol 87(1):12–18

    PubMed  CAS  Google Scholar 

  49. Wong GH, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242(4880):941–944

    PubMed  CAS  Google Scholar 

  50. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98(12):2854–2865

    PubMed  CAS  Google Scholar 

  51. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92(6):1487–1493

    PubMed  CAS  Google Scholar 

  52. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104(7):826–831

    PubMed  CAS  Google Scholar 

  53. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL (2001) Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345(20):1435–1443

    PubMed  CAS  Google Scholar 

  54. Clegg AJ, Scott DA, Loveman E, Colquitt JL, Royle P, Bryant J (2006) Clinical and cost-effectiveness of left ventricular assist devices as a bridge to heart transplantation for people with end-stage heart failure: a systematic review and economic evaluation. Eur Heart J 27(24):2929–2938

    PubMed  Google Scholar 

  55. Wray J, Hallas CN, Banner NR (2007) Quality of life and psychological well-being during and after left ventricular assist device support. Clin Transpl 21(5):622–627

    Google Scholar 

  56. Helman DN, Maybaum SW, Morales DL, Williams MR, Beniaminovitz A, Edwards NM, Mancini DM, Oz MC (2000) Recurrent remodeling after ventricular assistance: is long-term myocardial recovery attainable? Ann Thorac Surg 70(4):1255–1258

    PubMed  CAS  Google Scholar 

  57. Muller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R (1997) Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96(2):542–549

    PubMed  CAS  Google Scholar 

  58. Frazier OH, Myers TJ (1999) Left ventricular assist system as a bridge to myocardial recovery. Ann Thorac Surg 68(2):734–741

    PubMed  CAS  Google Scholar 

  59. Frazier OH, Delgado RM III, Scroggins N, Odegaard P, Kar B (2004) Mechanical bridging to improvement in severe acute “nonischemic, nonmyocarditis” heart failure. Congest Heart Fail 10(2):109–113

    PubMed  CAS  Google Scholar 

  60. Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, Miller LW, Margulies K, McRee S, Frazier OH, Torre-Amione G (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115(19):2497–2505

    PubMed  Google Scholar 

  61. Barbone A, Holmes JW, Heerdt PM, The AH, Naka Y, Joshi N, Daines M, Marks AR, Oz MC, Burkhoff D (2001) Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation 104(6):670–675

    PubMed  CAS  Google Scholar 

  62. Madigan JD, Barbone A, Choudhri AF, Morales DL, Cai B, Oz MC, Burkhoff D (2001) Time course of reverse remodeling of the left ventricle during support with a left ventricular assist device. J Thorac Cardiovasc Surg 121(5):902–908

    PubMed  CAS  Google Scholar 

  63. Barbone A, Oz MC, Burkhoff D, Holmes JW (2001) Normalized diastolic properties after left ventricular assist result from reverse remodeling of chamber geometry. Circulation 104(12 Suppl 1):I229–I232

    PubMed  CAS  Google Scholar 

  64. Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D (1995) Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91(11):2717–2720

    PubMed  CAS  Google Scholar 

  65. Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB (1998) Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98(7):656–662

    PubMed  CAS  Google Scholar 

  66. Altemose GT, Gritsus V, Jeevanandam V, Goldman B, Margulies KB (1997) Altered myocardial phenotype after mechanical support in human beings with advanced cardiomyopathy. J Heart Lung Transpl 16(7):765–773

    CAS  Google Scholar 

  67. Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB (1998) Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 97(23):2316–2322

    PubMed  CAS  Google Scholar 

  68. Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102(22):2713–2719

    PubMed  CAS  Google Scholar 

  69. Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104(8):881–886

    PubMed  CAS  Google Scholar 

  70. James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, Bravo E (1995) Effect of the implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation 92(9 Suppl):II191–II195

    PubMed  CAS  Google Scholar 

  71. James KB, McCarthy PM, Jaalouk S, Bravo EL, Betkowski A, Thomas JD, Nakatani S, Fouad-Tarazi FM (1996) Plasma volume and its regulatory factors in congestive heart failure after implantation of long-term left ventricular assist devices. Circulation 93(8):1515–1519

    PubMed  CAS  Google Scholar 

  72. Delgado R III, Radovancevic B, Massin EK, Frazier OH, Benedict C (1998) Neurohormonal changes after implantation of a left ventricular assist system. ASAIO J 44(4):299–302

    PubMed  Google Scholar 

  73. Thohan V, Stetson SJ, Nagueh SF, Rivas-Gotz C, Koerner MM, Lafuente JA, Loebe M, Noon GP, Torre-Amione G (2005) Cellular and hemodynamics responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey–Noon left ventricular assist device: a comparative analysis with pulsatile-type devices. J Heart Lung Transpl 24(5):566–575

    Google Scholar 

  74. Birks EJ, Felkin LE, Banner NR, Khaghani A, Barton PJ, Yacoub MH (2004) Increased toll-like receptor 4 in the myocardium of patients requiring left ventricular assist devices. J Heart Lung Transpl 23(2):228–235

    Google Scholar 

  75. Birks EJ, Latif N, Owen V, Bowles C, Felkin LE, Mullen AJ, Khaghani A, Barton PJ, Polak JM, Pepper JR, Banner NR, Yacoub MH (2001) Quantitative myocardial cytokine expression and activation of the apoptotic pathway in patients who require left ventricular assist devices. Circulation 104(12 Suppl 1):I233–I240

    PubMed  CAS  Google Scholar 

  76. Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, Frazier OH, Entman ML, Noon GP (1999) Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation 100(11):1189–1193

    PubMed  CAS  Google Scholar 

  77. Terracciano CM, Harding SE, Adamson D, Koban M, Tansley P, Birks EJ, Barton PJ, Yacoub MH (2003) Changes in sarcolemmal Ca entry and sarcoplasmic reticulum Ca content in ventricular myocytes from patients with end-stage heart failure following myocardial recovery after combined pharmacological and ventricular assist device therapy. Eur Heart J 24(14):1329–1339

    PubMed  CAS  Google Scholar 

  78. Chen X, Piacentino V III, Furukawa S, Goldman B, Margulies KB, Houser SR (2002) L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 91(6):517–524

    PubMed  CAS  Google Scholar 

  79. Dandel M, Weng Y, Siniawski H, Potapov E, Lehmkuhl HB, Hetzer R (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112(9 Suppl):I37–I45

    PubMed  Google Scholar 

  80. Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J, Winowich S, McNamara DM (2005) Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation 112(9 Suppl):I32–I36

    PubMed  Google Scholar 

  81. Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, Moore CH, Loisance DY, El-Banayosy A, Frazier H (2002) Long-term follow-up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transpl 21(5):516–521

    Google Scholar 

  82. Bruckner BA, Stetson SJ, Perez-Verdia A, Youker KA, Radovancevic B, Connelly JH, Koerner MM, Entman ME, Frazier OH, Noon GP, Torre-Amione G (2001) Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transpl 20(4):457–464

    CAS  Google Scholar 

  83. Sun BC, Catanese KA, Spanier TB, Flannery MR, Gardocki MT, Marcus LS, Levin HR, Rose EA, Oz MC (1999) 100 long-term implantable left ventricular assist devices: the Columbia Presbyterian interim experience. Ann Thorac Surg 68(2):688–694

    PubMed  CAS  Google Scholar 

  84. Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, DiTullio M, Savin S, Cordisco ME, Rose E, Oz M (1998) Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 98(22):2383–2389

    PubMed  CAS  Google Scholar 

  85. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355(18):1873–1884

    PubMed  CAS  Google Scholar 

  86. Gorcsan J III, Severyn D, Murali S, Kormos RL (2003) Non-invasive assessment of myocardial recovery on chronic left ventricular assist device: results associated with successful device removal. J Heart Lung Transpl 22(12):1304–1313

    Google Scholar 

  87. Matsumiya G, Monta O, Fukushima N, Sawa Y, Funatsu T, Toda K, Matsuda H (2005) Who would be a candidate for bridge to recovery during prolonged mechanical left ventricular support in idiopathic dilated cardiomyopathy? J Thorac Cardiovasc Surg 130(3):699–704

    PubMed  Google Scholar 

  88. Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, Baba HA, Wohlschlaeger J, Miller LW (2011) Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol 57(6):641–652. doi:10.1016/j.jacc.2010.11.010

    PubMed  CAS  Google Scholar 

  89. Hetzer R, Muller JH, Weng Y, Meyer R, Dandel M (2001) Bridging-to-recovery. Ann Thorac Surg 71(3 Suppl):S109–S113

    PubMed  CAS  Google Scholar 

  90. Thiene G, Corrado D, Basso C (2008) Revisiting definition and classification of cardiomyopathies in the era of molecular medicine. Eur Heart J 29(2):144–146

    PubMed  Google Scholar 

  91. Hunt SA (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 46(6):e1–e82

    PubMed  Google Scholar 

  92. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276

    PubMed  Google Scholar 

  93. Bruckner BA, Razeghi P, Stetson S, Thompson L, Lafuente J, Entman M, Loebe M, Noon G, Taegtmeyer H, Frazier OH, Youker K (2004) Degree of cardiac fibrosis and hypertrophy at time of implantation predicts myocardial improvement during left ventricular assist device support. J Heart Lung Transpl 23(1):36–42

    Google Scholar 

  94. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L (1990) Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 82(5):1730–1736

    PubMed  CAS  Google Scholar 

  95. Tsutamoto T, Hisanaga T, Fukai D, Wada A, Maeda Y, Maeda K, Kinoshita M (1995) Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol 76(11):803–808

    PubMed  CAS  Google Scholar 

  96. Yoshimura M, Yasue H, Okumura K, Ogawa H, Jougasaki M, Mukoyama M, Nakao K, Imura H (1993) Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87(2):464–469

    PubMed  CAS  Google Scholar 

  97. Sakurai S, Adachi H, Hasegawa A, Hoshizaki H, Oshima S, Taniguchi K, Kurabayashi M (2003) Brain natriuretic peptide facilitates severity classification of stable chronic heart failure with left ventricular dysfunction. Heart 89(6):661–662

    PubMed  CAS  Google Scholar 

  98. Jugdutt BI, Butler C (2007) Ventricular unloading, tissue angiotensin II, matrix modulation, and function during left ventricular assist device support. J Am Coll Cardiol 49(11):1175–1177

    PubMed  Google Scholar 

  99. Klotz S, Danser AH, Foronjy RF, Oz MC, Wang J, Mancini D, D’Armiento J, Burkhoff D (2007) The impact of angiotensin-converting enzyme inhibitor therapy on the extracellular collagen matrix during left ventricular assist device support in patients with end-stage heart failure. J Am Coll Cardiol 49(11):1166–1174

    PubMed  CAS  Google Scholar 

  100. Bruggink AH, van Oosterhout MF, de Jonge N, Ivangh B, van Kuik J, Voorbij RH, Cleutjens JP, Gmelig-Meyling FH, de Weger RA (2006) Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transpl 25(9):1091–1098

    Google Scholar 

  101. Koshy SK, Reddy HK, Shukla HH (2003) Collagen cross-linking: new dimension to cardiac remodeling. Cardiovasc Res 57(3):594–598

    PubMed  CAS  Google Scholar 

  102. Bruckner BA, Stetson SJ, Farmer JA, Radovancevic B, Frazier OH, Noon GP, Entman ML, Torre-Amione G, Youker KA (2000) The implications for cardiac recovery of left ventricular assist device support on myocardial collagen content. Am J Surg 180(6):498–501; discussion 501–492

    Google Scholar 

  103. Milting H, Jacob M, Kassner A, Heimann P, Mannherz HG, Becker G, Meyer HE, Bothig D, Arusoglu L, Morshuis M, Korfer R, El Banayosy A (2004) The structural examination of myocardial samples from patients with end-stage heart failure supported by ventricular assist devices using electron microscopy and amino acid analysis reveals low degree of reverse remodeling. J Heart Lung Transpl 23(4):396–404

    Google Scholar 

  104. Liang H, Muller J, Weng YG, Wallukat G, Fu P, Lin HS, Bartel S, Knosalla C, Pregla R, Hetzer R (2004) Changes in myocardial collagen content before and after left ventricular assist device application in dilated cardiomyopathy. Chin Med J (Engl) 117(3):401–407

    Google Scholar 

  105. McCarthy PM, Nakatani S, Vargo R, Kottke-Marchant K, Harasaki H, James KB, Savage RM, Thomas JD (1995) Structural and left ventricular histologic changes after implantable LVAD insertion. Ann Thorac Surg 59(3):609–613

    PubMed  CAS  Google Scholar 

  106. Scheinin SA, Capek P, Radovancevic B, Duncan JM, McAllister HA Jr, Frazier OH (1992) The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J 38(3):M271–M274

    PubMed  CAS  Google Scholar 

  107. Li YY, Feng Y, McTiernan CF, Pei W, Moravec CS, Wang P, Rosenblum W, Kormos RL, Feldman AM (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104(10):1147–1152

    PubMed  CAS  Google Scholar 

  108. Starling RC, Young JB (1998) Surgical therapy for dilated cardiomyopathy. Cardiol Clin 16(4):727–737

    PubMed  CAS  Google Scholar 

  109. Felkin LE, Birks EJ, George R, Wong S, Khaghani A, Yacoub MH, Barton PJ (2006) A quantitative gene expression profile of matrix metalloproteinases (MMPS) and their inhibitors (TIMPS) in the myocardium of patients with deteriorating heart failure requiring left ventricular assist device support. J Heart Lung Transpl 25(12):1413–1419

    Google Scholar 

  110. Mital S, Loke KE, Addonizio LJ, Oz MC, Hintze TH (2000) Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respiration in failing human hearts. J Am Coll Cardiol 36(6):1897–1902

    PubMed  CAS  Google Scholar 

  111. Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, Miller LW, Birks EJ, Yacoub MH, Barton PJ (2006) Myocardial expression of the arginine: glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–I20. doi:10.1161/CIRCULATIONAHA.105.000448

    PubMed  Google Scholar 

  112. Drakos SG, Terrovitis JV, Nanas JN, Charitos EI, Ntalianis AS, Malliaras KG, Diakos N, Koudoumas D, Theodoropoulos S, Yacoub MH, Anastasiou-Nana MI (2011) Reverse electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. Ann Thorac Surg 91(3):764–769. doi:10.1016/j.athoracsur.2010.10.091

    PubMed  Google Scholar 

  113. Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, Starling RC, Moravec CS (2010) Duration of left ventricular assist device support: effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transpl 29(5):554–561. doi:10.1016/j.healun.2009.10.015

    Google Scholar 

  114. Hall JL, Birks EJ, Grindle S, Cullen ME, Barton PJ, Rider JE, Lee S, Harwalker S, Mariash A, Adhikari N, Charles NJ, Felkin LE, Polster S, George RS, Miller LW, Yacoub MH (2007) Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur Heart J 28(5):613–627. doi:10.1093/eurheartj/ehl365

    PubMed  CAS  Google Scholar 

  115. Birks EJ, Hall JL, Barton PJ, Grindle S, Latif N, Hardy JP, Rider JE, Banner NR, Khaghani A, Miller LW, Yacoub MH (2005) Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation 112(9 Suppl):I57–I64. doi:10.1161/CIRCULATIONAHA.104.526137

    PubMed  Google Scholar 

  116. Klein I, Hong C, Schreiber SS (1990) Cardiac atrophy in the heterotopically transplanted rat heart: in vitro protein synthesis. J Mol Cell Cardiol 22(4):461–468

    PubMed  CAS  Google Scholar 

  117. Ito K, Nakayama M, Hasan F, Yan X, Schneider MD, Lorell BH (2003) Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts. Circulation 107(8):1176–1182

    PubMed  Google Scholar 

  118. Soppa GK, Lee J, Stagg MA, Siedlecka U, Youssef S, Yacoub MH, Terracciano CM (2008) Prolonged mechanical unloading reduces myofilament sensitivity to calcium and sarcoplasmic reticulum calcium uptake leading to contractile dysfunction. J Heart Lung Transpl 27(8):882–889

    Google Scholar 

  119. Thompson EW, Marino TA, Uboh CE, Kent RL, Cooper G (1984) Atrophy reversal and cardiocyte redifferentiation in reloaded cat myocardium. Circ Res 54(4):367–377

    PubMed  CAS  Google Scholar 

  120. Schena S, Kurimoto Y, Fukada J, Tack I, Ruiz P, Pang M, Striker LJ, Aitouche A, Pham SM (2004) Effects of ventricular unloading on apoptosis and atrophy of cardiac myocytes. J Surg Res 120(1):119–126

    PubMed  Google Scholar 

  121. Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MA (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102(3):344–350

    PubMed  CAS  Google Scholar 

  122. Wong K, Boheler KR, Bishop J, Petrou M, Yacoub MH (1998) Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features. Cardiovasc Res 37(1):115–122

    PubMed  CAS  Google Scholar 

  123. Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S, Yatani A, Dorn GW II (2000) Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101(14):1707–1714

    PubMed  CAS  Google Scholar 

  124. George I, Xydas S, Mancini DM, Lamanca J, DiTullio M, Marboe CC, Shane E, Schulman AR, Colley PM, Petrilli CM, Naka Y, Oz MC, Maybaum S (2006) Effect of clenbuterol on cardiac and skeletal muscle function during left ventricular assist device support. J Heart Lung Transpl 25(9):1084–1090

    Google Scholar 

  125. Soppa GK, Smolenski RT, Latif N, Yuen AH, Malik A, Karbowska J, Kochan Z, Terracciano CM, Yacoub MH (2005) Effects of chronic administration of clenbuterol on function and metabolism of adult rat cardiac muscle. Am J Physiol Heart Circ Physiol 288(3):H1468–H1476

    PubMed  CAS  Google Scholar 

  126. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, Bougard R, Amrani M, Yacoub MH, Dreyfus G, Khaghani A (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123(4):381–390. doi:10.1161/CIRCULATIONAHA.109.933960

    PubMed  CAS  Google Scholar 

  127. Aaronson KD, Pagani FD, Maybaum S, Feldman DS, Bogaev RC, O’Connell JB, Boyce SW, McGee EW, Sun BC, Goldstein DJ, Frazier H, Myles JD, Weatherwax KJ, Basobas L, McGowan L, Farrar DJ, Yacoub MH, Birks EJ, Miller LW (2011) Combination therapy with pulsatile left ventricular assist device, heart failure medication and clenbuterol in chronic heart failure: results from HARPS. J Heart Lung Transpl 30(4):S8–S9

    Google Scholar 

  128. Jugdutt BI (2010) Heart failure in the elderly: advances and challenges. Expert Rev Cardiovasc Ther 8(5):695–715. doi:10.1586/erc.10.36

    PubMed  Google Scholar 

  129. Adamson RM, Stahovich M, Chillcott S, Baradarian S, Chammas J, Jaski B, Hoagland P, Dembitsky W (2011) Clinical strategies and outcomes in advanced heart failure patients older than 70 years of age receiving the HeartMate II left ventricular assist device: a community hospital experience. J Am Coll Cardiol 57(25):2487–2495. doi:10.1016/j.jacc.2011.01.043

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant # IAP-99003 from the Canadian Institutes of Health Research, Ottawa, ON. We thank Catherine Jugdutt for assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, C.R., Jugdutt, B.I. The paradox of left ventricular assist device unloading and myocardial recovery in end-stage dilated cardiomyopathy: implications for heart failure in the elderly. Heart Fail Rev 17, 615–633 (2012). https://doi.org/10.1007/s10741-012-9300-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9300-8

Keywords

Navigation