Skip to main content
Log in

Three-Dimensional Phylogeny in Two Dimensions: How Darwin and Other Nineteenth-Century Naturalists Created Three-Dimensional Figures of the Natural System by Combining Trees of Life and Maps of Affinity

  • Original Research
  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

The two great modern naturalists, Linnaeus and Darwin, expressed their intuition about how best to visualize patterns of affinities, that is, morphological similarities and divergences between taxa. Linnaeus suggested that “all plants show affinities on all sides, like a territory on a geographical map,” while Darwin thought that it was virtually impossible to understand the affinities between living and extinct species without a genealogical tree. Genealogical trees follow the diachronic, evolving logic of a timeline, whereas maps depict a synchronous pattern of extant taxa. Although the two seem unrelated, various naturalists made attempts to combine them. Surprisingly, these resulted in three-dimensional images that, in order to be observed, had to be projected on paper. The naturalists Max Fürbringer and Richard Bowdler Sharpe were aware of this fact, but even Darwin himself twice combined the basic intuitions underlying the two modes of representation to produce three-dimensional images. This article is a brief history of the efforts to merge genealogical trees and map-like cross sections of affinities into one three-dimensional image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. Darwin ([1859] 2009, p. 431): “As it is difficult to show the blood-relationship between the numerous kindred of any ancient and noble family, even by the aid of a genealogical tree, and almost impossible to do this without this aid, we can understand the extraordinary difficulty which naturalists have experienced in describing, without the aid of a diagram, the various affinities which they perceive between the many living and extinct members of the same great natural class.”

  2. For a recent discussion about the heuristic role of the adaptive landscape concept, see Skipper (2004) and Svensson and Calsbeek (2012).

  3. Cambridge University Library MS.DAR.205.5.183r. Transcription by J. David Archibald (2014, p. 92).

  4. Cambridge University Library MS.DAR.205.5.184r. Transcription by J. David Archibald (2014, p. 92; Archibald believes that the last word could be bird [p. 87]).

  5. See also Archibald (2014, p. 89) and Voss (2010, p. 108).

  6. In “Three Pedigrees of Evolution, Observed from Above” and “1874: Garrod Reconstructs Both Ancestor and Offspring through a Tree and Its Cross Section”, we will encounter similar layer-like cross sections.

  7. “Auf der beigegebenen Tafel (IV) enden die Auszweigungen des Stammbaumes in den Peripherieen 8 concentrischer Kreise und ist damit angedeutet, bis zu welcher Stufe jede einzelne Gattung sich entwickelt hat.”

  8. See Winsor (2015a, b, c) for a detailed discussion of this map and of the concept of affinity from the 1820s, when William Sharp MacLeay launched his quinarian natural system until the publication of Darwin’s Origin. Her three-part article has the form of an amusing, imaginary dialogue between Darwin and Strickland. She also discusses Strickland’s later additions to his map, which eventually resulted in a map of the avian part of the animal kingdom. I will not discuss these additions, as they do not have direct relevance to the subject of this article.

  9. I follow Sharpe’s use of italics for the scientific names of taxa regardless of their taxonomic rank.

  10. The map shows three additional interesting features: (1) The “bridges” between the “islands,” e.g., between the pink Alcyone, Alcedo, and Corythornis. (2) The bright pink and green dots on both sides of the “straits” between the islands. These symbolize border-crossing affinities, shared by species in different genera. (3) The outward-pointing arrows that appear to suggest plate tectonics occurring in this region of a two-dimensional representation of the natural kingdom. In fact, however, the arrows represent affinity between the kingfishers and the “continents” on the map’s lower and right edges. Given the scope of this article, however, I cannot analyze these features in depth.

  11. For previous mentions of Garrod, see O’Hara (1988a, p. 2754) and Pietsch (2012, pp. 132, 143, 144).

  12. Garrod’s images can be explained without specifying their ornithological content and thus without decoding his character states. However, for readers who want to read their morphological details, the state of the common ancestor, 2. + . + . + , may serve as an example: 2 means in this case that the common ancestor possesses two carotid arteries; in other cases, Garrod used different numbers or letters to indicate particulars of the carotid arteries. The first + indicates the presence of an ambiens muscle (the thigh muscle of certain birds that bends the toes of the bird, so that the feet can clasp the perch on which the bird sits). The second + indicates the presence of a furcula or wishbone, a kind of strut between the bird’s shoulders. The last + stands for the presence of an oil gland which supplies oil to be spread on the wings (Garrod 1874, p. 595).

  13. “Zur graphischen Darstellung der Stammbäume sei Folgendes kurz bemerkt. In Wirklichkeit wird jeder Stammbaum wie sein Vorbild in der Natur eine stereometrische Form haben, d. h. sich in den drei räumlichen Dimensionen erstrecken müssen. Gleich den linearen Systemen kann ein planer Stammbaum mit in nur einer Ebene stattfindenden Verästelungen den wirklichen Verhältnissen nicht entsprechen. Aus Draht angefertigte Modelle mit nach allen Richtungen gehenden Zweigen dürften die vollkommenste Darstellung des körperlichen Stammbaumes repraesentiren, während die graphische Reproduction sich—nach Art der Baupläne—mit der Vertical- und Horizontalprojection begnügen muss.”

  14. “Könnte ich einen solchen, sich nach allen drei Dimensionen erstreckenden Stammbaum als ein körperliches, aus Draht oder einem ähnlichen Materiale angefertigtes Modell beigeben.... Auch stereoskopische Ansichten eines solchen Modelles würden wenigstens einen allgemeinen Eindruck der betreffenden Verhältnisse gewähren. Beides ist leider bei der auf einfache Flächen angewiesenen graphischen Methode nicht möglich.”

  15. The footer “Max Fürbringer fec.,” at the bottom left of the images, indicates that he himself was the draftsman of the views, which were transferred by an unknown lithographer to the offset plates used in printing them.

  16. “Sein Stamm, seine Äste, Nebenäste und groberen und feineren Zweige geben einen klaren Einblick in das mannigfache Gewirr der phylogenetischen Entwicklungsbahnen und zugleich der näheren oder ferneren genealogischen Relationen, welche die einzelnen Abtheilungen unter einander verbinden; je kurzer oder je länger dabei die Äste und Zweige sind, je weniger weit oder je weiter sie sich von ihrem Ausgangspunkte verbinden, desto niedriger oder höher ist die morphologische Stellung der durch sie repraesentirten Formen; je weniger oder je mehr sie gegenseitig divergiren, desto minder oder mehr differiren die denselben Ahnen entsprossenen Abkömmlinge.”

  17. “Dünne und dicke, durchlaufende, gestrichelte und punktirte Linien umschliessen Subfamilien, Familien, Gentes, Subordines und Ordines.”

  18. We need not be surprised that Fürbringer mentioned Garrod’s “horizontal projection,” along with Sharpe’s (Fürbringer 1888, p. 1123).

  19. “Um in das Gewirr der verticalen Ansichte grössere Deutlichkeit zu bringen, müssten einige Äste, die sich sonst verdeckt haben würden, oder einander zu nahe gekommen wären, etwas beiseite gebogen werden.”

  20. “einerseits erscheinen manche in Wirklichkeit weit aus einander liegende Zweige auf den verticalen Ansichten, wo die körperliche Tiefe nicht ausgedrückt werden könnte, allzusehr genähert...; andererseits scheinen auf den horizontalen Projectionen manche Familien dicht neben einander zu liegen, die wegen der sehr verschiedenen Höhe ihrer Entwicklung oder wegen ihrer Abstammung von ganz verschiedenen Zweigen in Wirklichkeit von einander recht entfernt sind.”

  21. “Die Grösse dieser Kreise sind verschiedene, je nach dem ungefähren Umfange der durch sie ausgedruckte Familien; ... Die Kreise selbst sind etwas zu gross, die Zwischenräume zwischen ihnen zu klein angegeben; eine grössere Entfernung verbot sich durch die Rücksicht auf den beschränkten Umfang der Tafel.”

  22. The potential added value of a real three-dimensional model is questionable. Admittedly, it would have been possible to view it from all sides and therefore no branch would have remained hidden behind others. But otherwise it would have been nothing other than a “manifold tangle” of, say, iron wire. Moreover, it is hard to imagine how syntheses at horizontal levels in the form of circles or irregular islands could have been integrated in the model itself without hiding other parts of it from sight. In this respect the two-dimensional horizontal projections perform even better.

  23. The purport of Sharpe’s statement is similar to Darwin’s observation, quoted in the opening line of this article, that naturalists cannot do without the aid of genealogical trees when trying to describe “the various affinities which they perceive between the many living and extinct members of the same great natural class.” In fact, Fürbringer’s Stammbaum may be considered the special, ornithological illustration of Darwin’s general statement, by which he introduced the famous diagram in Origin. In this special case, Sharpe, confronted with the challenge of understanding and presenting Fürbringer’s overwhelming number of findings on the phylogeny of birds to the congress, stated that he could not meet this challenge without the latter’s Stammbaum.

  24. The quotations in this section are from the printed report, not from Sharpe’s spoken address.

  25. I thank an anonymous referee for this interesting suggestion.

References

  • Archibald, J. David. 2014. Aristotle’s Ladder, Darwin’s Tree: The Evolution of Visual Metaphors for Biological Order. New York: Columbia University Press.

    Book  Google Scholar 

  • Darwin, Charles. (1836–1844) 1987. Charles Darwin’s Notebooks, 1836–1844: Geology, Transmutation of Species, Metaphysical Enquiries. Transcribed and edited by Paul H. Barrett, Peter J. Gautrey, Sandra Herbert, David Kohn, and Sydney Smith. Cambridge: Cambridge University Press.

  • Darwin, Charles. (1859) 2009. The Annotated Origin. A Facsimile of the First Edition of On the Origin of Species. Reprinted with annotations by James T. Costa. Cambridge, MA: Belknap Press of Harvard University Press, 2009.

  • Dayrat, Benoît. 2003. The Roots of Phylogeny: How Did Haeckel Build His Trees?” Systematic Biology 52 (4): 515–527.

    Article  Google Scholar 

  • Engler, Heinrich Gustav Adlof. 1881. Über die morphologischen Verhältnisse und die geographische Verbreitung der Gattung Rhus, sowie der mit ihr verwandten, Lebenden und ausgestorbenen Anacardiaceen. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 1: 364–429.

    Google Scholar 

  • Fürbringer, Max. 1888. Untersuchungen zur Morphologie und Systematik der Vögel, zugleich ein Beitrag zur Anatomie der Stütz- und Bewegungsorgane, mit 30 Tafeln. Amsterdam: Holkema.

    Book  Google Scholar 

  • Garrod, Alfred Henry. 1874. On Some Points in the Anatomy of the Parrots Which Bear on the Classification of the Suborder. Proceedings of the Zoological Society of London 42: 586–598.

    Article  Google Scholar 

  • Giseke, Paul Dietrich, ed. 1792. Caroli a Linne Praelectiones in ordines naturales plantarum edidit Paulus D. Giseke. Hamburg: Benjamin Gottlob Hoffmann.

  • Haeckel, Ernst. 1874. Anthropogenie; oder Entwicklungsgeschichte des Menschen. Leipzig: Wilhelm Engelmann.

    Google Scholar 

  • Linnaeus, Carl. 1751. Philosophia botanica. Stockholm: Kiesewetter; Amsterdam: Chatelain.

  • O’Hara, Robert J. 1988a. Diagrammatic Classification of Birds, 1819–1901: Views of the Natural System in 19th Century British Ornithology. In Acta XIX Congressus Internationalis Ornithologici, ed. H. Ouellet, 2746–2759. Ottawa: National Museum of Natural Sciences.

    Google Scholar 

  • O’Hara, Robert J. 1988b. Homage to Clio, or, Toward an Historical Philosophy for Evolutionary Biology. Systematic Zoology 37 (2): 142–155.

    Article  Google Scholar 

  • O’Hara, Robert J. 1991. Representations of the Natural System in the Nineteenth Century. Biology and Philosophy 6: 255–274. Repr. in Picturing Knowledge: Historical and Philosophical Problems Concerning the Use of Art in Science, ed. B.S. Baigrie, 164–183. Toronto: University of Toronto Press, 1996.

  • O’Hara, Robert J. 1992. Telling the Tree: Narrative Representation and the Study of Evolutionary History. Biology and Philosophy 7 (2): 135–160.

    Article  Google Scholar 

  • O’Hara, Robert J. 1993. Systematic Generalization, Historical Fate, and the Species Problem. Systematic Biology 42 (3): 231–246.

    Article  Google Scholar 

  • O’Hara, Robert J. 1996. Mapping the Space of Time: Temporal Representation in the Historical Sciences. In New Perspectives on the History of Life: Systematic Biology as Historical Narrative, ed. M. T. Ghiselin and G. Pinna. Memoirs of the California Academy of Sciences 20: 7–17.

    Google Scholar 

  • Pietsch, Theodore W. 2012. Trees of Life: A Visual History of Evolution. Baltimore: John Hopkins University Press.

    Google Scholar 

  • Priest, Greg. 2018. Diagramming Evolution: The Case of Darwin’s Trees. Endeavour 42 (18): 157–171.

    Article  Google Scholar 

  • Proceedings of the International Ornithological Congress, Budapest 1891, Hauptbericht, Officieller Teil. 1892. Budapest: Ministeriums für Cultus und Unterricht.

  • van Putten, Kees. 2019. Three Eighteenth-Century Attempts to Map the Natural Order: Johann Herrmann—Georg Christoph Würtz—Paul Dietrich Giseke. Early Science and Medicine 24: 33–89.

    Article  Google Scholar 

  • van Putten, Kees. 2020. Trees, Coral, and Seaweed: An Interpretation of Sketches Found in Darwin’s Papers. Journal of the History of Biology 53: 5–44.

    Article  Google Scholar 

  • Sharpe, Richard Bowdler. 1868–1871. A Monograph of the Alcedinidae: Or, Family of Kingfishers. London: published by the author.

  • Sharpe, Richard Bowdler. 1891. A Review of Recent Attempts to Classify Birds; An Address Delivered before the Second International Ornithological Congress on the 18th of May 1891. Budapest: Office of the Congress.

  • Skipper, Robert. 2004. The Heuristic Role of Sewell Wright’s 1932 Adaptive Landscape Diagram. Philosophy of Science 71 (5): 1176–1188.

    Article  Google Scholar 

  • Strickland, Hugh E. 1840. On the True Method of Discovering the Natural System in Zoology and Botany. Annals and Magazine of Natural History 6 (36): 184–194.

    Article  Google Scholar 

  • Svensson, Erik, and Ryan Calsbeek, eds. 2012. The Adaptive Landscape in Evolutionary Biology. Oxford: Oxford University Press.

    Google Scholar 

  • Torrens, Erica, and Ana Barahona. 2012. The "Tree of Life" in Textbooks and Museums. Almagest, International Journal for the History of Scientific Ideas 3 (5): 66–90.

    Google Scholar 

  • Vigors, Nicholas Aylward. 1825. Observations on the Natural Affinities that Connect the Orders and Families of Birds. Transactions of the Linnean Society of London 14 (3): 395–517.

    Article  Google Scholar 

  • Voss, Julia. 2010. Darwin’s Pictures: Views of Evolutionary Theory, 1837–1874. New Haven, CT: Yale University Press.

    Google Scholar 

  • Winsor, Mary P. 2015a. Considering Affinity: An Ethereal Conversation (Part One of Three). Endeavour 39(1): 69–79.

    Article  Google Scholar 

  • Winsor, Mary P. 2015b. Considering Affinity: An Ethereal Conversation (Part Two of Three). Endeavour 39 (2): 116–126.

  • Winsor, Mary P. 2015c. Considering Affinity: An Ethereal Conversation (Part Three of Three). Endeavour 39 (3–4): 179–187.

  • Wright, Sewall. 1932. The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. In Proceedings of the Sixth International Congress of Genetics, ed. D.F. Jones, vol. 1, 356–366. Menasha: Brooklyn Botanic Garden.

Download references

Acknowledgements

I would like to express my sincere thanks to Prof. Carla Rita Palmerino and Prof. Christoph Lüthy, at the Center for the History of Philosophy and Science, Radboud University, Nijmegen, The Netherlands. Without their unfailing confidence and continuous inspiration, this article would not have been produced. I also owe a lot to Jasper C. van Putten, PhD, Basel, Switzerland, who made some indispensable illustrations. I also thank two anonymous reviewers whose suggestions contributed to the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees van Putten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Putten, K. Three-Dimensional Phylogeny in Two Dimensions: How Darwin and Other Nineteenth-Century Naturalists Created Three-Dimensional Figures of the Natural System by Combining Trees of Life and Maps of Affinity. J Hist Biol 54, 639–687 (2021). https://doi.org/10.1007/s10739-021-09662-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-021-09662-5

Keywords

Navigation