Journal of the History of Biology

, Volume 43, Issue 2, pp 325–361 | Cite as

Regeneration: Thomas Hunt Morgan’s Window into Development

  • Mary Evelyn Sunderland


Early in his career Thomas Hunt Morgan was interested in embryology and dedicated his research to studying organisms that could regenerate. Widely regarded as a regeneration expert, Morgan was invited to deliver a series of lectures on the topic that he developed into a book, Regeneration (1901). In addition to presenting experimental work that he had conducted and supervised, Morgan also synthesized and critiqued a great deal of work by his peers and predecessors. This essay probes into the history of regeneration studies by looking in depth at Regeneration and evaluating Morgan’s contribution. Although famous for his work with fruit fly genetics, studying Regeneration illuminates Morgan’s earlier scientific approach which emphasized the importance of studying a diversity of organisms. Surveying a broad range of regenerative phenomena allowed Morgan to institute a standard scientific terminology that continues to inform regeneration studies today. Most importantly, Morgan argued that regeneration was a fundamental aspect of the growth process and therefore should be accounted for within developmental theory. Establishing important similarities between regeneration and development allowed Morgan to make the case that regeneration could act as a model of development. The nature of the relationship between embryogenesis and regeneration remains an active area of research.


development differentiation diversity Hans Driesch embryology Entwicklungsmechanik epimorphosis Thomas Hunt Morgan morphallaxis plasticity totipotent regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, Garland E. 1968. ‹Thomas Hunt Morgan and the Problem of Natural Selection.’ Journal of the History of Biology 1: 113–139. 1968.CrossRefGoogle Scholar
  2. Allen, Garland E. 1969. ‹T. H. Morgan and the Emergence of a New American Biology.’ The Quarterly Review of Biology 44: 168–188. 1969.CrossRefGoogle Scholar
  3. Allen, Garland E. 1975. Life Science in the Twentieth Century. Cambridge:Cambridge University Press.Google Scholar
  4. Allen, Garland E. 1978. Thomas Hunt Morgan, The Man and his Science. Princeton:Princeton University Press.Google Scholar
  5. Allen, Garland E. 1980. ‹The Evolutionary Synthesis: Morgan and Natural Selection Revisited.’ Ernst Mayr, William B Provine (eds.), The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge:Harvard University Press, pp. 356–382.Google Scholar
  6. Allen, Garland E. 1983. ‹T.H. Morgan and the Influence of Mechanistic Materialism on the Development of the Gene Concept 1910–1940.’ Integrative and Comparative Biology 23: 829–843.CrossRefGoogle Scholar
  7. Ankeny, Rachel. 2000. ‹Fashioning Descriptive Models in Biology: Of Worms and Wiring Diagrams.’ Philosophy of Science 67: S260–S272.CrossRefGoogle Scholar
  8. Ankeny, Rachel. 2001. ‹Model Organisms as Models: Understanding the ‹Lingua Franca’ of the Human Genome Project.’ Philosophy of Science 68: S251–S261.CrossRefGoogle Scholar
  9. Benson, Keith. 1991. ‹Observation Versus Philosophical Commitment in Eighteenth-Century Ideas of Regeneration and Generation.’ Charles Dinsmore (ed.), A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge:Cambridge University Press, pp. 91–100.Google Scholar
  10. Blackstone, Neil W. 2005. ‹Charles Manning Child (1869–1954): The Past, Present, and Future of Metabolic Signaling.’ Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 306B: 1–7.CrossRefGoogle Scholar
  11. Bolker, Jessica. 1995. ‹Model Systems in Developmental Biology.’ Bioessays 17: 451–455.CrossRefGoogle Scholar
  12. Bosch, Thomas C G. 2007. ‹Why Polyps Regenerate and We Don’t: Towards a Cellular and Molecular Framework for Hydra Regeneration.’ Developmental Biology 303: 421–433.CrossRefGoogle Scholar
  13. Brockes, Jeremy P, Kumar, A. 2005. ‹Appendage Regeneration in Adult Vertebrates and Implications for Regenerative Medicine.’ Science 310: 1919–1923.CrossRefGoogle Scholar
  14. Carlson, Bruce. 2007. Principles of Regeneration Biology. Burlington, Massachusetts:Academic Press.Google Scholar
  15. Child, Charles Manning. 1915a. Individuality in Organisms. Chicago:University of Chicago Press.Google Scholar
  16. Child, Charles Manning. 1915b. Senescence and Rejuvenescence. Chicago:University of Chicago Press.Google Scholar
  17. Child, Charles Manning. 1915c. A Dynamic Conception of the Organic Individual. Proceedings of the National Academy of Sciences of the United States of America 1: 164–172.Google Scholar
  18. Chiu, A, Hall, Z. 2006. ‹Stem Cell Research: The California Experience.’ The Journal of Neuroscience 26: 6661–6663.CrossRefGoogle Scholar
  19. Churchill, Frederick B. 1970. ‹Hertwig, Weismann, and the Meaning of the Reduction Division circa 1890.’ Isis. 61: 429–457.CrossRefGoogle Scholar
  20. Churchill, Frederick B. 1987. ‹From Heredity to Vererbung: The Transmission Problem, 1850–1915.’ Isis 78: 337–364.Google Scholar
  21. Churchill, Frederick B. 1997. ‹Life Before Model Systems: General Zoology at August Weismann’s Institute.’ American Zoologist 37: 260–268.Google Scholar
  22. Clarke, A, Fujimura, J (eds.). 1992. The Right Tools for the Job: At Work in Twentieth Century Life Sciences. Princeton:Princeton University Press.Google Scholar
  23. Coleman, W. 1977. Biology in the Nineteenth Century: Problems of Form, Function, and Transformation. Cambridge:Cambridge University Press.Google Scholar
  24. Creager, Angela. 2002. The Life of a Virus. Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago:University of Chicago Press.Google Scholar
  25. Daley, George. Goodell, Margaret, Snyder, Evan. 2003. ‹Realistic Prospects for Stem Cell Therapeutics.’ Hematotology 2003: 398–418.CrossRefGoogle Scholar
  26. Dawson, Virginia P. 1987. Nature’s Enigma the Problem of the Polyp in the Letters of Bonnet, Trembley and Reaumur. Philadelphia:American Philosophical Society.Google Scholar
  27. de Chadarevian, S, Hopwood, N (eds.). 2004. Models: The Third Dimension of Science. Stanford, CA:Stanford University Press.Google Scholar
  28. Dinsmore, Charles E (ed.). 1991a. A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge:Cambridge University Press.Google Scholar
  29. Dinsmore, Charles E. (ed.). 1991b. “Lazzaro Spallanzani: Concepts of Generation and Regeneration.” Charles E. Dinsmore (ed.), A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge: Cambridge University Press, pp. 67–89.Google Scholar
  30. Dinsmore, Charles E. (ed.). 1995. “Animal Regeneration: From Fact to Concept.” BioScience 45: 484–492.Google Scholar
  31. Dolman, Claude E. 1970. ‹Spallanzani, Lazzaro.’ Dictionary of Scientific Biography 12: 553–567.Google Scholar
  32. Driesch, Hans. 1892. “Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugen von Theil-und Doppelbildung.” Zeitschrift für wissenschaftliche Zoologie 53: 160–178. Trans. as “The Potency of the First Two Cleavage Cells in Echinoderm Development. Experimental Production of Partial and Double Formations.” Benjamin Willier and Jane Oppenheimer (eds.), Foundations of Experimental Embryology. New Jersey: Prentice-Hall, Inc. 1964, pp. 38–50.Google Scholar
  33. Driesch, Hans, Morgan, Thomas Hunt. 1895. ‹Zur Analysis der ersten Entwickelungstadien des Ctenophoreneis. I. Von der Entwickelungeinzeluer Ctenophorenblastomeren.’ Arch. Entw. Mech. Org. 2: 204–215.Google Scholar
  34. Fisher, RA, de Beer, GR. 1947. ‹Thomas Hunt Morgan, 1866–1945.’ Obituary Notices of Fellows of the Royal Society 5: 451–466.Google Scholar
  35. Gasking, Elizabeth. 1967. Investigations into Generation, 1651–1828. Baltimore:Johns Hopkins University Press.Google Scholar
  36. Geison, Gerald L. 1978. Michael Foster and the Cambridge School of Physiology. Princeton:Princeton University Press.Google Scholar
  37. Geison, Gerald L, Laubichler, Manfred. 2001. ‹The Varied Lives of Organisms: Variation in the Historiography of the Biological Sciences.’ Studies in History and Philosophy of Biological and Biomedical Sciences 32: 1–29.CrossRefGoogle Scholar
  38. Gilbert, Scott F. 1978. ‹The Embryological Origins of the Gene Theory.’ Journal of the History of Biology 11: 307–351.CrossRefGoogle Scholar
  39. Goss, RJ. 1991. ‹The Natural History (and Mystery) of Regeneration.’ Charles E Dinsmore (ed.), A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge:Cambridge University Press, pp. 7–23.Google Scholar
  40. Gurley, K, Rink, J, Sánchez Alvarado, A. 2007. ‹ß-Catenin Defines Head Versus Tail Indentity During Planarian Regeneration and Homeostasis.’ Science 319: 323–327.CrossRefGoogle Scholar
  41. Hans Driesch-Thomas Hunt Morgan Collection, 1893–1933. 1 Reel of Microfilm. American Philosophical Society.Google Scholar
  42. Keller, Evelyn. 2000. ‹Models of and Models for: Theory and Practice in Contemporary Biology.’ Philosophy of Science 67: S72–S86.CrossRefGoogle Scholar
  43. Kohler, Robert E. 1994. Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago:University of Chicago Press.Google Scholar
  44. Korschelt, Eugen. 1990. Regeneration and Transplantation. Bruce M. Carlson (ed.); translated by Sabine Lichtner Ayed. Canton, MA: Watson Publishing Company.Google Scholar
  45. Landecker, Hannah. 2007. Culturing Life: How Cells Became Technologies. Cambridge:Harvard University Press.Google Scholar
  46. Laubichler, Manfred. 2000. Symposium “The Organism in Philosophical Focus”—An Introduction.” Philosophy of Science 67: S256–S259.Google Scholar
  47. Laubichler, Manfred, Davidson, Eric. 2008. ‹Boveri’s Long Experiment: Sea Urchin merogones and the Establishment of the Role of Nuclear Chromosomes in Development.’ Developmental Biology 314: 1–11.CrossRefGoogle Scholar
  48. Laubichler, Manfred, Wagner, Gunter P. 2000. ‹Organism and Character Decomposition: Steps Towards an Integrative Theory of Biology.’ Philosophy of Science 67: S289–S300.CrossRefGoogle Scholar
  49. Lenhoff, SG, Lenhoff, HM. 1986. Hydra and the Birth of Experimental Biology-1744. Abraham Trembley’s Memoirs Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped like Horns. Pacific Grove, CA:Boxwood Press.Google Scholar
  50. Lenhoff, SG, Lenhoff, HM. 1991. ‹Abraham Trembley and the Origins of Research on Regeneration in Animals.’ Charles E Dinsmore (ed.), A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge:Cambridge University Press, pp. 47–66.Google Scholar
  51. Lillie, Frank R. 1944. The Woods Hole Marine Biological Laboratory. Chicago:University of Chicago Press.Google Scholar
  52. Maxmen, Amy. 2008. ‹The Sea Spider’s Contribution to T. H. Morgan’s (1866–1945) Development.’ Journal of Experimental Zoology 310B: 203–215.CrossRefGoogle Scholar
  53. Mitman, Gregory, Fausto-Sterling, Anne. 1992. ‹Whatever Happened to Planaria? C.M. Child and the Physiology of Inheritance.’ Adele E Clarke, Joan Fujimura (eds.), The Right Tools for the Job: At Work in Twentieth Century Life Sciences. Princeton:Princeton University Press, pp. 172–196.Google Scholar
  54. Maienschein, Jane. 1984. ‹What Determines Sex? A Study of Converging Approaches, 1880–1916.’ Isis 75: 456–478.CrossRefGoogle Scholar
  55. Maienschein, Jane. 1985. ‹Preformation of New Formation – or Neither or Both.’ Timothy Horder, JA Witkowski, CC Wylie (eds.), A History of Embryology. Cambridge:Cambridge University Press, pp. 74–108.Google Scholar
  56. Maienschein, Jane. 1991a. ‹T.H. Morgan’s regeneration, epigenesis, and (w)holism.’ Charles E Dinsmore (ed.), A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge:Cambridge University Press, pp. 133–149.Google Scholar
  57. Maienschein, Jane. 1991b. Transforming Traditions in American Biology, 1880–1915. Baltimore:The Johns Hopkins University Press.Google Scholar
  58. Maienschein, Jane. 1991c. ‹The Origins of Entwicklungsmechanik.’ Scott F Gilbert (ed.), A Conceptual History of Modern Embryology. Baltimore:The Johns Hopkins University Press, pp. 43–61.Google Scholar
  59. Maienschein, Jane. 2003. Whose View of Life? Embyos, Cloning and Stem Cells. Cambridge:Harvard University Press.Google Scholar
  60. Maienschein, Jane. 2009. ‹Regenerative Medicine in Historical Context.’ Medicine Studies 1: 33–40.CrossRefGoogle Scholar
  61. Maienschein, Jane, Sunderland, Mary E, Rachel Ankeny, ME, Robert, Jason S. 2008. ‹The Ethos of Translational Research.’ American Journal of Bioethics 8: 43–51.Google Scholar
  62. Matthews, Kathleen, Kaufman, Thomas C, Gelbart, William M. 2005. ‹Research Resources for Drosophila: The Expanding Universe.’ Nature Reviews Genetics 6: 179–193.CrossRefGoogle Scholar
  63. Metcalfe, Anthony D, Ferguson, Mark. 2007. ‹Tissue Engineering of Replacement Skin: The Crossroads of Biomaterials, Wound Healing, Embryonic Development, Stem Cells and Regeneration.’ Journal of the Royal Society 4: 413–437.Google Scholar
  64. Miko, Ilona. 2008. “Thomas Hunt Morgan and Sex Linkage.” Nature Education 1(1).Google Scholar
  65. Moore, John A. 1983. ‹Thomas Hunt Morgan – The Geneticist.’ American Zoologist 23: 855–865.Google Scholar
  66. Morgan, Thomas Hunt. 1891. ‹A Contribution to the Embryology and Phylogeny of the Pycnogonids (Dissertation).’ Studies from the Biological Laboratory of the Johns Hopkins University 5: 1–76.Google Scholar
  67. Morgan, Thomas Hunt. 1901a. Regeneration. Columbia University Biological Series, 3 vols. New York:The Macmillan Company.Google Scholar
  68. Morgan, Thomas Hunt. 1901b. ‹Regeneration and Liability to Injury.’ Science 14: 235–248.CrossRefGoogle Scholar
  69. Morgan, Thomas Hunt. 1903. Evolution and Adaptation. New York:The Macmillan Company.Google Scholar
  70. Morgan, Thomas Hunt. 1906. ‹The Physiology of Regeneration.’ The Journal of Experimental Zoology 3: 457–500.CrossRefGoogle Scholar
  71. Morgan, Thomas Hunt. 1909. ‹The Dynamic Factor in Regeneration.’ Biological Bulletin 16: 265–276.CrossRefGoogle Scholar
  72. Morgan, Thomas Hunt. 1910. “The Role of Irritability and Contractility as Dynamic Factors in Development and Regeneration.” Seventh International Congress of Zoology, Boston, 190J. Proceedings. Cambridge, Mass.: University Press, pp. 483–490.Google Scholar
  73. Morgan, Thomas Hunt. 1923. ‹The Development of Asymmetry in the Fiddler Crab.’ American Naturalist 57: 269–273.CrossRefGoogle Scholar
  74. Morgan, Thomas Hunt. 1924. ‹The Artificial Induction of Symmetrical Claws in Male Fiddler Crabs.’ American Naturalist 58: 289–295.CrossRefGoogle Scholar
  75. Morgan, Thomas Hunt. 1934. Embryology and Genetics. New York:Columbia University Press.Google Scholar
  76. Morgan, Thomas Hunt, Stevens, Nettie Marie. 1904. ‹Experiments on Polarity in Tubularia.’ The Journal of Experimental Zoology 1: 559–585.CrossRefGoogle Scholar
  77. Nyhart, Lynne K. 1995. Biology Takes Form: Animal Morphology and the German Universities 1800–1900. Chicago:University of Chicago Press.Google Scholar
  78. Oppenheimer, Jane M. 1983. ‹Thomas Hunt Morgan as an Embryologist: The View From Bryn Mawr.’ American Zoologist 23: 845–854.Google Scholar
  79. Oppenheimer, Jane M. 1970. ‹Hans Driesch.’ Dictionary of Scientific Biography 4: 186–189.Google Scholar
  80. Pinto-Correia, Clara. 1997. The Ovary of Eve: Eggs and Sperm and Preformation. Chicago:University of Chicago Press.Google Scholar
  81. Rader, Karen. 2004. Making Mice: Standardizing Animals for American Biomedical Research, 1900-155. Princeton, New Jersey:Princeton University Press.Google Scholar
  82. Rafii, S, Lyden, D. 2003. ‹Therapeutic Stem and Progenitor Cell Transplantation for Organ Vascularization and Regeneration.’ Nature Medicine 9: 702–712.CrossRefGoogle Scholar
  83. Rainger, Ronald, Benson, Keith, Maienschein, Jane (eds.). 1988. The American Development of Biology. Philadelphia:University of Pennsylvania Press.Google Scholar
  84. Reddien, Peter W, Bermange, Adam L, Murfitt, Kenneth J, Jennings, Joya R, Sánchez Alvarado, Alejandro. 2005. ‹Identification of Genes Needed for Regeneration, Stem Cell Function, and Tissue Homeostasis by Systematic Gene Perturbation in Planaria.’ Developmental Cell 8: 635–649.CrossRefGoogle Scholar
  85. Robert, Jason Scott. 2004. ‹Model Systems in Stem Cell Biology.’ Bioessays 26: 1005–1012.CrossRefGoogle Scholar
  86. Roux, Wilhelm. 1888. “Beiträge zur Entwickelungsmechanik des Embryo. Über die kÜnstliche Hervorbringung halber Embryonen durch Zerstörung einer der beiden ersten Furchungskugeln, sowie Über die Nachentwickelung (Postgeneration) der fehlenden Köperhälfte.” Virchows Archiv fÜr pathologisches Anatomie und Physiologie und klinische Medizin 114: 113–153. Trans. as “Contributions to the Developmental Mechanics of the Embryo. On the Artificial Production of Half-Embryos by Destruction of One of the First Two Blastomeres, and the Later Development (Postgeneration) of the Missing Half of the Body.” Benjamin Willier and Jane Oppenheimer (eds.), Foundations of Experimental Embryology. New Jersey: Prentice-Hall, Inc. 1964, pp. 2–37.Google Scholar
  87. Roe, Shirley. 1981. Matter, Life, and Generation: Eighteenth-Century Embryology and the Haller-Wolff Debate. Cambridge:Cambridge University Press.Google Scholar
  88. Sánchez Alvarado, Alejandro. 2000a. ‹Regeneration in the Metazoans: Why Does it Happen?’ Bioessays 22: 578–590.CrossRefGoogle Scholar
  89. Sánchez Alvarado, Alejandro. 2000b. ‹The Case for Comparative Regeneration: Learning from Simpler Organisms How to Make New Parts from Old.’ The Journal of Regenerative Medicine 1: 31–36.CrossRefGoogle Scholar
  90. Sánchez Alvarado, Alejandro. 2006. ‹Planarian Regeneration: Its End is its Beginning.’ Cell 124: 241–245.CrossRefGoogle Scholar
  91. Sánchez Alvarado, Alejandro and Panagiotis A. Tsonis, P.A. 2006. “Bridging the Regeneration Gap: Genetic Insights from Diverse Animal Models.” Nature Reviews Genetics 7: 873–884.Google Scholar
  92. Sapp, Jan. 2003. Genesis: The Evolution of Biology. New York:Oxford University Press.Google Scholar
  93. Schaffner, Kenneth. 1993. Discovery and Explanation in Biology and Medicine. Chicago:University of Chicago Press.Google Scholar
  94. Singec, I, Jandial, R, Crain, A, Nikkhah, G, Snyder, E. 2007. ‹The Leading Edge of Stem Cell Therapeutics.’ Annual Review of Medicine 58: 313–328.CrossRefGoogle Scholar
  95. Sturtevant, Alfred H. 1959. ‹Thomas Hunt Morgan.’ Biographical Memoirs of the National Academy of Science 33: 282–325.Google Scholar
  96. Sturtevant, Alfred H. 2001. ‹Perspectives: Reminiscences of T. H. Morgan.’ Genetics 159: 1–5.Google Scholar
  97. Tanaka, Elly M, Weidinger, Gilbert. 2008. ‹Heads or Tails: Can Wnt Tell Which One is Up?’ Nature Cell Biology 10: 122–124.CrossRefGoogle Scholar
  98. Vartanian, Aram. 1950. ‹Trembley’s Polyp, La Mettrie, and Eighteenth-Century French Materialism.’ Journal of the History of Ideas 11: 259–286.CrossRefGoogle Scholar
  99. W.E.C. 1903. ‹Morgan’s “Regeneration”.’ The American Naturalist 37: 71.CrossRefGoogle Scholar
  100. Weismann, August. 1893. “The Germ Plasm.” Translated by W. Newton Parker and Harriet Rönnfeldt. New York: Charles Scribner’s Sons.Google Scholar
  101. Weismann, August. 1904. The Evolution Theory, Vol. II. Translated by J. Arthur Thomson and Margaret R. Thomson. London: Edward Arnold.Google Scholar
  102. Willier, Benjamin H, Oppenheimer, Jane M (eds.). 1964. Foundations of Experimental Embryology. Englewood Cliffs, NJ:Prentice-Hall.Google Scholar
  103. Wolpert, Lewis. 1991. ‹Morgan’s Ambivalence: A History of Gradients and Regeneration.’ Charles E Dinsmore (ed.), A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge:Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Office for History of Science and TechnologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations