Skip to main content

Advertisement

Log in

Genome-wide analysis of gene expression in human embryonic tooth germ

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

While numerous genes that play important regulatory roles during tooth development in mice have been identified, little is known about gene expression profile and their function during human odontogenesis. To unveil expression profile of odontogenic genes in humans, we conducted genome-wide gene expression analysis by microarray assays to analyze differential gene expression between tooth germ and lip tissue from 11-week old human fetuses. We identified 167 genes that are strongly expressed in the cap stage tooth germ as compared to the lip tissue. Among them, 145 genes were further identified by gene ontology enrichment analysis that are highly represented in multiple gene ontology classes, include extracellular components, sequence-specific DNA binding proteins, Wnt-protein binding molecules, system development, organogenesis, and cell differentiation. Sixty-seven genes that are known to be associated with mammalian tooth development and tooth abnormalities were identified. Real-time PCR was further employed to validate microarray data. Moreover, in situ hybridization assay demonstrated tooth type specific expression of ISL1 and BARX1 in the incisor, canine, and molar respectively, consistent with microarray results. Our results represent a set of reliable data that could provide a solid base for future elaboration of molecular mechanisms underlying human tooth development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailleul-Forestier I, Monod-Broca J, Benkerrou M, Mora F, Picard B (2008) Generalized periodontitis associated with Chediak-Higashi syndrome. J Periodontol 79(7):1263–1270

  • Bei M (2009) Molecular genetics of tooth development. Curr Opin Genet Dev 19(5):504–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, Strauss J-P, Pelletier V, Marion V, Poch O (2011) Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 89(6):773–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouwman P, Göllner H, Elsässer HP, Eckhoff G, Karis A, Grosveld F, Philipsen S, Suske G (2000) Transcription factor Sp3 is essential for post-natal survival and late tooth development. EMBO J 19(4):655–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Espinoza HM, Cox CJ, Semina EV, Amendt BA (2002) A molecular basis for differential developmental anomalies in Axenfeld–Rieger syndrome. Hum Mol Genet 11(7):743–753

    Article  CAS  PubMed  Google Scholar 

  • Fensgård Ø, Kassahun H, Bombik I, Rognes T, Lindvall JM, Nilsen H (2010) A two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways. Aging 2(3):133–159

    PubMed Central  PubMed  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

  • Hu X, Zhang S, Chen G, Lin C, Huang Z, Chen Y, Zhang Y (2013) Expression of SHH signaling molecules in the developing human primary dentition. BMC Dev Biol 13(1):1–8

    Article  Google Scholar 

  • Hu X, Lin C, Shen B, Ruan N, Guan Z, Chen Y, Zhang Y (2014) Conserved odontogenic potential in embryonic dental tissues. J Dent Res 93(5):490–495

    Article  CAS  PubMed  Google Scholar 

  • Isabelle M, Moreel X, Gagné J-P, Rouleau M, Ethier C, Gagné P, Hendzel MJ, Poirier GG (2010) Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci 8(1):22

    Article  PubMed Central  PubMed  Google Scholar 

  • Jussila M, Thesleff I (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 4(4):a008425

    Article  PubMed Central  PubMed  Google Scholar 

  • Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 10(11):1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Kraus BS, Jordan RE (1965) The human dentition before birth. Lea & Febiger, Philadelphia

    Google Scholar 

  • Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87(1):110–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ligon AH, Moore SD, Parisi MA, Mealiffe ME, Harris DJ, Ferguson HL, Quade BJ, Morton CC (2005) Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 76(2):340–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin D, Huang Y, He F, Gu S, Zhang G, Chen Y, Zhang Y (2007) Expression survey of genes critical for tooth development in the human embryonic tooth germ. Dev Dyn 236(5):1307–1312

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Selever J, Lu M-F, Martin JF (2003) Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 130(25):6375–6385

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie A, Leeming G, Jowett A, Ferguson M, Sharpe P (1991) The homeobox gene Hox 7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development 111(2):269–285

    CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Angeli I, James C, Lendahl U, Sharpe PT (2003) Role of Islet1 in the patterning of murine dentition. Development 130(18):4451–4460

    Article  CAS  PubMed  Google Scholar 

  • O’dwyer E, Jones D (2005) Dental anomalies in Axenfeld–Rieger syndrome. Int J Paediatr Dent 15(6):459–463

    Article  PubMed  Google Scholar 

  • Peters H, Neubüser A, Kratochwil K, Balling R (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12(17):2735–2747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6(4):348–356

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (2009) Larsen’s human embryology. Elsevier Health Sciences, UK

    Google Scholar 

  • Sharov AA, Dudekula DB, Ko MS (2005) A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21(10):2548–2549

    Article  CAS  PubMed  Google Scholar 

  • Sheehan-Rooney K, Pálinkášová B, Eberhart JK, Dixon MJ (2010) A cross-species analysis of Satb2 expression suggests deep conservation across vertebrate lineages. Dev Dyn 239(12):3481–3491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silvia González López B, Solalinde CO, Ito TK, Carrillo EL, Solalinde EO (2004) Cleido cranial dysplasia: report of a family. J Oral Sci 46(4):259–266

    Article  Google Scholar 

  • Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J, Zhang Y, Chen Y (2006) Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 235(5):1347–1357

    Article  Google Scholar 

  • Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116(9):1647–1648

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Partanen A, Vainio S (1991) Epithelial-mesenchymal interactions in tooth morphogenesis: the roles of extracellular matrix, growth factors, and cell surface receptors. J Craniofac Genet Dev Biol 11(4):229–237

    CAS  PubMed  Google Scholar 

  • Tucker AS, Matthews KL, Sharpe PT (1998) Transformation of tooth type induced by inhibition of BMP signaling. Science 282(5391):1136–1138

    Article  CAS  PubMed  Google Scholar 

  • Vaahtokari A, Åberg T, Jernvall J, Keränen S, Thesleff I (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54(1):39–43

    Article  CAS  PubMed  Google Scholar 

  • Vastardis H, Karimbux N, Guthua SW, Seidman J, Seidman CE (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13(4):417–421

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, Hu X, Zhang Y (2014) Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol. 2014 Mar 20. [Epub ahead of print] PubMed PMID: 24647585

  • Yoshizaki K, de Vega S, Yamada Y (2013) Gene evolution and functions of extracellular matrix proteins in teeth. Orthod Waves 72(1):1–10

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Zhao X, Hu Y, St Amand T, Zhang M, Ramamurthy R, Qiu M, Chen Y (1999) Msx1 is required for the induction of Patched by Sonic hedgehog in the mammalian tooth germ. Dev Dyn 215(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen Z, Song YQ, Liu C, Chen Y (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15(5):301–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Hospital for Women and Children of Fujian Province for providing aborted human embryonic tissues for this study. Grant sponsors: “973” Project (2010CB944800) from the Ministry of Science and Technology of China; Specific Research fund of the Doctoral Program of Higher Education, China (20093503110001); National Natural Science Foundation of China (81100730, 81271102).

Conflict of interest

None.

Ethical standard

Permission for the use of human fetus tissues in this study was granted by the Ethics Committee of Fujian Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanding Zhang.

Additional information

Zhen Huang and Xuefeng Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10735_2014_9580_MOESM1_ESM.pdf

Supplementary Table S1. A summary of genes that are strongly expressed in the developing tooth as compared to lip tissue. (PDF 14 kb)

10735_2014_9580_MOESM2_ESM.pdf

Supplementary Table S2. A table of detailed results of the cellular component by BIGNO analysis. The table contains more detailed results. Apart from a listing of the analysis options, the table contains the (adjusted) p value for each significantly overrepresented GO class. The number of genes in the test set is annotated to that class and their identity, and the number of genes is annotated to that class in the reference set. (PDF 4 kb)

10735_2014_9580_MOESM3_ESM.pdf

Supplementary Table S3. A table of detailed results of the molecular function by BIGNO analysis. The table contains more detailed results. Apart from a listing of the analysis options, the table contains the (adjusted) p value for each significantly overrepresented GO class. The number of genes in the test set is annotated to that class and their identity, and the number of genes is annotated to that class in the reference set. (PDF 2 kb)

10735_2014_9580_MOESM4_ESM.pdf

Supplementary Table S4. A table of detailed results of the biological process by BIGNO analysis. The table contains more detailed results. Apart from a listing of the analysis options, the table contains the (adjusted) p value for each significantly overrepresented GO class, the number of genes in the test set is annotated to that class and their identity, and the number of genes is annotated to that class in the reference set. (PDF 13 kb)

Supplementary Figure S1. The full–size image of Fig. 5. (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Hu, X., Lin, C. et al. Genome-wide analysis of gene expression in human embryonic tooth germ. J Mol Hist 45, 609–617 (2014). https://doi.org/10.1007/s10735-014-9580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-014-9580-5

Keywords

Navigation