Skip to main content

Advertisement

Log in

Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Cardiac remodeling is a key determinant in the clinical course and outcome of heart failure and characterized by cardiac hypertrophy, fibrosis, cardiomyocyte apoptosis and inflammation. The anti-inflammatory, anti-apoptotic and anti-fibrotic effects of paeoniflorin have been identified in various types of tissue and cells. However, the role of paeoniflorin in cardiac remodeling remains unclear. We performed aortic banding (AB) in mice to induce a cardiac remodeling model in response to pressure overload. Paeoniflorin (20 mg/kg) was administered by daily intraperitoneal (i.p.) injection. Paeoniflorin treatment promoted the survival rate and improved cardiac function of mice at 8 weeks post surgery. AB-induced cardiac hypertrophy, as assessed by heart weight, gross heart, HE and WGA staining, cross-sectional area of cardiomyocyte and mRNA expresssion of hypertrophic makers, was attenuated by paeoniflorin. Paeoniflorin also inhibited collagen deposition, expression of TGFβ, CTGF, collagen Iα and collagen IIIα, and phosphorylation of Smad2 and Smad3 in the heart exposed to pressure overload. Cardiomyocyte apoptosis and induction of Bax and cleaved caspase3 in response to AB were suppressed by paeoniflorin. Furthermore, paeoniflorin decreased the quantity of CD68+ cells, protein levels of TNF-α and IL-1β, and phosphorylation of IκBα and NFκB-p65 in the heart after AB. In conclusion, paeoniflorin attenuated cardiac hypertrophy, fibrosis, apoptosis and inflammation, and improved left ventricular function in pressure overloaded mice. The cardioprotective effect of paeoniflorin is associated with the inhibition of TGFβ/Smads and NF-κB pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asakura M, Kitakaze M (2009) Global gene expression profiling in the failing myocardium. Circ J 73(9):1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8(1):30–41

    Article  PubMed  Google Scholar 

  • Cao W, Zhang W, Liu J, Wang Y, Peng X, Lu D, Qi R, Wang H (2011) Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-alpha and IL-1beta release and augmentation of IL-10 production. Int Immunopharmacol 11(2):172–178

    Article  PubMed  CAS  Google Scholar 

  • Chu D, Luo Q, Li C, Gao Y, Yu L, Wei W, Wu Q, Shen J (2007) Paeoniflorin inhibits TGF-beta1-mediated collagen production by Schistosoma japonicum soluble egg antigen in vitro. Parasitology 134(Pt 11):1611–1621

    PubMed  CAS  Google Scholar 

  • Chu D, Du M, Hu X, Wu Q, Shen J (2011) Paeoniflorin attenuates schistosomiasis japonica-associated liver fibrosis through inhibiting alternative activation of macrophages. Parasitology 138(10):1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35(3):569–582

    Article  PubMed  CAS  Google Scholar 

  • Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89(2):265–272

    Article  PubMed  CAS  Google Scholar 

  • Dorn GW 2nd (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81(3):465–473

    Article  PubMed  CAS  Google Scholar 

  • Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res 69(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Ravassa S, Beaumont J, Lopez B, Diez J (2011) New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol 58(18):1833–1843

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362

    Article  PubMed  CAS  Google Scholar 

  • Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson KR, Guggilam A, Cismowski MJ, Galantowicz ML, West TA, Stewart JA Jr, Zhang X, Lord KC, Lucchesi PA (2011) Temporal pattern of left ventricular structural and functional remodeling following reversal of volume overload heart failure. J Appl Physiol 111(6):1778–1788

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Yang L, Zhou J, Lin R, Zhang J, Lin Q, Wang W, Zhang K (2012) Protective effects of paeoniflorin against cobalt chloride-induced apoptosis of endothelial cells via HIF-1alpha pathway. Toxicol In Vitro 26(3):455–461

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Qiao J, Yang Y, Lu Y (2012) Inhibitory effect of paeoniflorin on the inflammatory vicious cycle between adipocytes and macrophages. J Cell Biochem 113(8):2560–2566

    Article  PubMed  CAS  Google Scholar 

  • Jones WK, Brown M, Ren X, He S, McGuinness M (2003) NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3(3):229–254

    Article  PubMed  CAS  Google Scholar 

  • Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122(25):2727–2735

    Article  PubMed  Google Scholar 

  • Kim ID, Ha BJ (2010) The effects of paeoniflorin on LPS-induced liver inflammatory reactions. Arch Pharm Res 33(6):959–966

    Article  PubMed  CAS  Google Scholar 

  • Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA (2011) Pivotal role of cardiomyocyte TGF-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest 121(6):2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Li X, Shen J, Zhong Z, Wen H, Luo Q, Wei W (2009) Paeoniflorin: a monomer from traditional Chinese medical herb ameliorates Schistosoma japonicum egg-induced hepatic fibrosis in mice. J Parasitol 95(6):1520–1524

    Article  PubMed  Google Scholar 

  • Li JZ, Yu SY, Wu JH, Shao QR, Dong XM (2012) Paeoniflorin protects myocardial cell from doxorubicin-induced apoptosis through inhibition of NADPH oxidase. Can J Physiol Pharmacol 90(12):1569–1575

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Chen Y, Auger-Messier M, Molkentin JD (2012) Interaction between NFkappaB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res 110(8):1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91(12):1103–1113

    Article  PubMed  CAS  Google Scholar 

  • Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998

    Article  PubMed  CAS  Google Scholar 

  • Nizamutdinova IT, Jin YC, Kim JS, Yean MH, Kang SS, Kim YS, Lee JH, Seo HG, Kim HJ, Chang KC (2008) Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. Planta Med 74(1):14–18

    Article  PubMed  CAS  Google Scholar 

  • Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378(9792):704–712

    Article  PubMed  CAS  Google Scholar 

  • Steenman M, Chen YW, Le Cunff M, Lamirault G, Varro A, Hoffman E, Leger JJ (2003) Transcriptomal analysis of failing and nonfailing human hearts. Physiol Genomics 12(2):97–112

    PubMed  CAS  Google Scholar 

  • Wankun X, Wenzhen Y, Min Z, Weiyan Z, Huan C, Wei D, Lvzhen H, Xu Y, Xiaoxin L (2011) Protective effect of paeoniflorin against oxidative stress in human retinal pigment epithelium in vitro. Mol Vis 17:3512–3522

    PubMed  Google Scholar 

  • Wei L (2011) Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis. Exp Mol Pathol 90(1):74–78

    Article  PubMed  CAS  Google Scholar 

  • Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Wei X, Tang QZ, Feng J, Zhang Y, Liu C, Bian ZY, Zhang LF, Chen M, Bai X, Wang AB, Fassett J, Chen Y, He YW, Yang Q, Liu PP, Li H (2011) Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3beta and TGF-beta1-Smad signalling. Cardiovasc Res 92(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Yang HO, Ko WK, Kim JY, Ro HS (2004) Paeoniflorin: an antihyperlipidemic agent from Paeonia lactiflora. Fitoterapia 75(1):45–49

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Bian D, Jiao X, Wei Z, Zhang H, Xia Y, He Y, Dai Y (2011a) Paeoniflorin protects against lipopolysaccharide-induced acute lung injury in mice by alleviating inflammatory cell infiltration and microvascular permeability. Inflamm Res 60(10):981–990

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Shen DF, Bian ZY, Zong J, Deng W, Zhang Y, Guo YY, Li H, Tang QZ (2011b) Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS ONE 6(10):e26744

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Bian ZY, Zong J, Deng W, Yan L, Shen DF, Guo H, Dai J, Yuan Y, Zhang R, Lin YF, Hu X, Li H, Tang QZ (2012) Stem cell antigen 1 protects against cardiac hypertrophy and fibrosis after pressure overload. Hypertension 60(3):802–809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [81270303, 81000036 and 81000095] and the Fundamental Research Funds for the Central Universities of China [2012302020212 and 201130202020007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Zhu Tang.

Additional information

He-Xin Yang and Heng Zhou are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Yang, HX., Yuan, Y. et al. Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. J Mol Hist 44, 357–367 (2013). https://doi.org/10.1007/s10735-013-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-013-9491-x

Keywords

Navigation