Skip to main content

Advertisement

Log in

Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

In lactation, the intestinal absorption of nutrients and minerals, especially calcium, is markedly enhanced to supply precursors for milk production. Little is known regarding the mechanism of this lactation-induced intestinal hyperabsorption. However, it has been postulated to result from villous hypertrophy with enlarged absorptive area and the upregulation of the cation-selective tight junction protein claudin-15, which could form calcium-permeable paracellular pores, thereby enhancing the paracellular calcium absorption. Here, we demonstrated in the duodenum of 21-day lactating rats that there were increases in the villous height, villous width and crypt depth, which together led to expansion of absorptive surface area. Quantitative real-time PCR further showed that the mRNA levels of claudin-10 and -15 were increased in the duodenal mucosal cells of lactating rats as compared to age-matched unmated control rats. However, immunohistochemical analysis revealed the lactation-induced upregulation of claudin-15, but not claudin-10 protein expression in the duodenal villous cells. The present results, therefore, corroborated the previous hypothesis that lactation induced intestinal absorption of calcium and perhaps other cation minerals, in part, by increasing villous absorptive area and claudin-15 protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584. doi:10.1101/cshperspect.a002584

    Article  PubMed  Google Scholar 

  • Bikle DD, Zolock DT, Munson S (1984) Differential response of duodenal epithelial cells to 1,25-dihydroxyvitamin D3 according to position on the villus: a comparison of calcium uptake, calcium-binding protein, and alkaline phosphatase activity. Endocrinology 115(6):2077–2084

    Article  PubMed  CAS  Google Scholar 

  • Breves G, Schröder B, Muscher A (2010) Luminal and endocrine factors for regulation of intestinal monosaccharide and Ca2+ transport. Livest Sci 134(1–3):4–10. doi:10.1016/j.livsci.2010.06.081

    Article  Google Scholar 

  • Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N (2009) Two-step stimulation of intestinal Ca2+ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol Endocrinol Metab 297(3):E609–E619. doi:10.1152/ajpendo.00347.2009

    Article  PubMed  CAS  Google Scholar 

  • Charoenphandhu N, Wongdee K, Krishnamra N (2010) Is prolactin the cardinal calciotropic maternal hormone? Trends Endocrinol Metab 21(7):395–401. doi:10.1016/j.tem.2010.02.002

    Article  PubMed  CAS  Google Scholar 

  • Fell BF, Smith KA, Campbell RM (1963) Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J Pathol Bacteriol 85:179–188

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19(5):1912–1921. doi:10.1091/mbc.E07-09-0973

    Article  PubMed  CAS  Google Scholar 

  • Hammond KA (1997) Adaptation of the maternal intestine during lactation. J Mammary Gland Biol Neoplasia 2(3):243–252

    Article  PubMed  CAS  Google Scholar 

  • Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85(1):373–422. doi:10.1152/physrev.00003.2004

    Google Scholar 

  • Inai T, Sengoku A, Guan X, Hirose E, Iida H, Shibata Y (2005) Heterogeneity in expression and subcellular localization of tight junction proteins, claudin-10 and -15, examined by RT-PCR and immunofluorescence microscopy. Arch Histol Cytol 68(5):349–360. doi:10.1679/aohc.68.349

    Article  PubMed  CAS  Google Scholar 

  • Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2007) Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 293(1):E372–E384. doi:10.1152/ajpendo.00142.2007

    Article  PubMed  CAS  Google Scholar 

  • Kovacs CS (2005) Calcium and bone metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia 10(2):105–118. doi:10.1007/s10911-005-5394-0

    Article  PubMed  Google Scholar 

  • Lehr HA, van der Loos CM, Teeling P, Gown AM (1999) Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J Histochem Cytochem 47(1):119–126. doi:10.1177/002215549904700113

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Kubo A, Furuse M, Tsukita S (2004) A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117(Pt 7):1247–1257. doi:10.1242/jcs.00972

    Article  PubMed  CAS  Google Scholar 

  • Nuntapornsak A, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Changes in the mRNA expression of osteoblast-related genes in response to β3-adrenergic agonist in UMR106 cells. Cell Biochem Funct 28(1):45–51. doi:10.1002/cbf.1617

    Article  PubMed  CAS  Google Scholar 

  • Ofluoglu O, Ofluoglu D (2008) A case report: pregnancy-induced severe osteoporosis with eight vertebral fractures. Rheumatol Int 29(2):197–201. doi:10.1007/s00296-008-0641-5

    Article  PubMed  Google Scholar 

  • Paulsen DF (2010) Digestive tract. In: Paulsen DF (ed) Histology and cell biology: examination and board review. McGraw-Hill companies, Singapore, pp 207–228

    Google Scholar 

  • Pelletier G, de Passillé AM, Bernier-Cardou M, Morisset J (1987) Influence of pregnancy, lactation, litter size and diet energy density on the stomach and intestine of sows. J Nutr 117(10):1759–1766

    PubMed  CAS  Google Scholar 

  • Perin N, Keelan M, Jarocka-Cyrta E, Clandinin MT, Thomson AB (1997) Ontogeny of intestinal adaptation in rats in response to isocaloric changes in dietary lipids. Am J Physiol 273(3 Pt 1):G713–G720

    PubMed  CAS  Google Scholar 

  • Pinto D, Clevers H (2005) Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 306(2):357–363. doi:10.1016/j.yexcr.2005.02.022

    Article  PubMed  CAS  Google Scholar 

  • Prentice A (2000) Calcium in pregnancy and lactation. Annu Rev Nutr 20:249–272. doi:10.1146/annurev.nutr.20.1.249

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134(2):523–534. doi:10.1053/j.gastro.2007.11.040

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S (2011) Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 140(3):913–923. doi:10.1053/j.gastro.2010.08.006

    Article  PubMed  CAS  Google Scholar 

  • Thulesen J, Hartmann B, Nielsen C, Holst JJ, Poulsen SS (1999) Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat: effects of dietary fibre. Gut 45(5):672–678. doi:10.1136/gut.45.5.672

    Article  PubMed  CAS  Google Scholar 

  • Tso P, Balint JA (1986) Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol 250(6 Pt 1):G715–G726

    PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2(4):285–293. doi:10.1038/35067088

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291(6):F1288–F1299. doi:10.1152/ajprenal.00138.2006

    Article  PubMed  Google Scholar 

  • Walters JR, Weiser MM (1987) Calcium transport by rat duodenal villus and crypt basolateral membranes. Am J Physiol 252(2 Pt 1):G170–G177

    PubMed  CAS  Google Scholar 

  • Wongdee K, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2010) Claudin expression in the bone-lining cells of female rats exposed to long-standing acidemia. Exp Mol Pathol 88(2):305–310. doi:10.1016/j.yexmp.2009.12.005

    Article  PubMed  CAS  Google Scholar 

  • Wongdee K, Tulalamba W, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2011) Prolactin alters the mRNA expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells. Mol Cell Biochem 349(1–2):195–204. doi:10.1007/s11010-010-0674-4

  • Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, Stripp BR (2009) Molecular staging of epithelial maturation using secretory cell–specific genes as markers. Am J Respir Cell Mol Biol 40(3):340–348. doi:10.1165/rcmb.2007-0380OC

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Discovery-based Development Grant, National Science and Technology Development Agency (P-10-11281 to N. Charoenphandhu), the Faculty of Allied Health Sciences, Burapha University, the Office of the Higher Education Commission, the Thailand Research Fund (MRG5480230 to K. Wongdee), and the Senior Project Grant, Faculty of Allied Health Sciences, Burapha University (to K. Wongdee). C. Siangpro and S. Chaipai performed the senior project under supervision of K. Wongdee.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narattaphol Charoenphandhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongdee, K., Teerapornpuntakit, J., Siangpro, C. et al. Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats. J Mol Hist 44, 103–109 (2013). https://doi.org/10.1007/s10735-012-9451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9451-x

Keywords

Navigation