Skip to main content
Log in

Metaheuristics and machine learning: an approach with reinforcement learning assisting neural architecture search

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Methaheuristics (MHs) are techniques widely used for solving complex optimization problems. In recent years, the interest in combining MH and machine learning (ML) has grown. This integration can occur mainly in two ways: ML-in-MH and MH-in-ML. In the present work, we combine the techniques in both ways—ML-in-MH-in-ML, providing an approach in which ML is considered to improve the performance of an evolutionary algorithm (EA), whose solutions encode parameters of an ML model—artificial neural network (ANN). Our approach called TS\(_{in}\)EA\(_{in}\)ANN employs a reinforcement learning neighborhood (RLN) mutation based on Thompson sampling (TS). TS is a parameterless reinforcement learning method, used here to boost the EA performance. In the experiments, every candidate ANN solves a regression problem known as protein structure prediction deviation. We consider two protein datasets, one with 16,382 and the other with 45,730 samples. The results show that TS\(_{in}\)EA\(_{in}\)ANN performs significantly better than a canonical genetic algorithm (GA\(_{in}\)ANN) and the evolutionary algorithm without reinforcement learning (EA\(_{in}\)ANN). Analyses of the parameter’s frequency are also performed comparing the approaches. Finally, comparisons with the literature show that except for one particular case in the largest dataset, TS\(_{in}\)EA\(_{in}\)ANN outperforms other approaches considered the state of the art for the addressed datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/jliphard/DeepEvolve.

  2. Arms or actions will be referred to as alleles from now on in the text.

  3. We cannot call them optimal choices. We only know that the approach provided better results using them.

References

  • Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation, 1st edn. IOP Publishing Ltd., Bristol (1997)

    Book  Google Scholar 

  • Baymurzina, D., Golikov, E., Burtsev, M.: A review of neural architecture search. Neurocomputing 474, 82–93 (2022)

    Article  Google Scholar 

  • Bouneffouf, D., Rish, I., Aggarwal, C.: Survey on applications of multi-armed and contextual bandits. In: 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE Press, pp. 1–8 (2020)

  • CASP (2020) Protein structure prediction center. https://predictioncenter.org/

  • Cohen, F.E., Kelly, J.W.: Therapeutic approaches to protein-misfolding diseases. Nature 426(6968), 905–909 (2003)

    Article  Google Scholar 

  • Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)

    Google Scholar 

  • Cuvelier, T., Combes, R., Gourdin, E.: Statistically efficient, polynomial-time algorithms for combinatorial semi-bandits. Proc. ACM Meas. Anal. Comput. Syst. 5(1), 7387 (2021). https://doi.org/10.1145/3447387

    Article  Google Scholar 

  • Darwish, A., Hassanien, A.E., Das, S.: A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev. 53(3), 1767–1812 (2020)

    Article  Google Scholar 

  • Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  • Fairee, S., Khompatraporn, C., Prom-on, S., et al.: Combinatorial artificial bee colony optimization with reinforcement learning updating for travelling salesman problem. In: 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 93–96 (2019). https://doi.org/10.1109/ECTI-CON47248.2019.8955176

  • Floreano, D., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1, 47–62 (2008). https://doi.org/10.1007/s12065-007-0002-4

    Article  Google Scholar 

  • Gao, Z., Chen, Y., Yi, Z.: A novel method to compute the weights of neural networks. Neurocomputing 407, 409–427 (2020). https://doi.org/10.1016/j.neucom.2020.03.114

    Article  Google Scholar 

  • Gascón-Moreno, J., Salcedo-Sanz, S., Saavedra-Moreno, B., et al.: An evolutionary-based hyper-heuristic approach for optimal construction of group method of data handling networks. Inf. Sci. 247, 94–108 (2013). https://doi.org/10.1016/j.ins.2013.06.017

    Article  MathSciNet  Google Scholar 

  • Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics, 2nd edn. Springer, New York (2010)

    Google Scholar 

  • Hassan, M., Sabar, N.R., Song, A.: Optimising deep learning by hyper-heuristic approach for classifying good quality images. In: Shi, Y., Fu, H., Tian, Y., et al. (eds.) Computational Science—ICCS 2018, pp. 528–539. Springer, Cham (2018)

    Chapter  Google Scholar 

  • Hoang, T.N., Hoang, Q.M., Ouyang, R., et al.: Decentralized high-dimensional Bayesian optimization with factor graphs. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI Press, AAAI’18, pp. 3231–3238 (2018)

  • Jaafra, Y., Laurent, J.L., Deruyver, A., et al.: Reinforcement learning for neural architecture search: a review. Image Vis. Comput. 89, 57–66 (2019)

    Article  Google Scholar 

  • Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Int. Res. 4(1), 237–285 (1996)

    Google Scholar 

  • Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., et al.: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2), 393–422 (2022). https://doi.org/10.1016/j.ejor.2021.04.032

    Article  MathSciNet  Google Scholar 

  • Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108571401

    Book  Google Scholar 

  • Liang, X., Xu, J.: Biased relu neural networks. Neurocomputing 423, 71–79 (2021). https://doi.org/10.1016/j.neucom.2020.09.050

    Article  Google Scholar 

  • Liu, Y., Sun, Y., Xue, B., et al.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. PP, 1–21 (2021)

    Google Scholar 

  • Mahajan, A., Teneketzis, D.: Multi-Armed Bandit Problems, pp. 121–151. Springer, Boston (2008)

    Google Scholar 

  • Mathieu-Gaedke, M., Böker, A., Glebe, U.: How to characterize the protein structure and polymer conformation in protein-polymer conjugates—a perspective. Macromol. Chem. Phys. 224(3), 2200353 (2023). https://doi.org/10.1002/macp.202200353

    Article  Google Scholar 

  • Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill, New York (1997)

    Google Scholar 

  • Ozsoydan, F., Gölcük, I.: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks. Eng. Sci. Technol. Int. J. 35, 101261 (2022). https://doi.org/10.1016/j.jestch.2022.101261

    Article  Google Scholar 

  • Pagliuca, P., Milano, N., Nolfi, S.: Maximizing adaptive power in neuroevolution. PLOS ONE 13(e0198), 788 (2018). https://doi.org/10.1371/journal.pone.0198788

    Article  Google Scholar 

  • Pathak, Y., Rana, P., Singh, P., et al.: Protein structure prediction (rmsd \(\le \) 5 Å) using machine learning models. Int. J. Data Min. Bioinform. 14, 71–85 (2016). https://doi.org/10.1504/IJDMB.2016.073361

    Article  Google Scholar 

  • Poyser, M., Breckon, T.P.: Neural architecture search: a contemporary literature review for computer vision applications. Pattern Recognit. 147(110), 052 (2024). https://doi.org/10.1016/j.patcog.2023.110052

    Article  Google Scholar 

  • Real, E., Moore, S., Selle, A., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. JMLR.org, Sydney, NSW, Australia, ICML’17, pp. 2902–2911 (2017)

  • Russo, D., Roy, B., Kazerouni, A., et al.: A Tutorial on Thompson Sampling. Now Publishers, Boston (2018). https://doi.org/10.1561/9781680834710

    Book  Google Scholar 

  • Sabar, N.R., Turky, A., Song, A., et al.: Optimising deep belief networks by hyper-heuristic approach. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2738–2745 (2017). https://doi.org/10.1109/CEC.2017.7969640

  • Sabar, N.R., Turky, A., Song, A., et al.: An evolutionary hyper-heuristic to optimise deep belief networks for image reconstruction. Appl. Soft Comput. 97(105), 510 (2020). https://doi.org/10.1016/j.asoc.2019.105510

    Article  Google Scholar 

  • Santra, S., Hsieh, J.W., Lin, C.F.: Gradient descent effects on differential neural architecture search: a survey. IEEE Access 9, 89602–89618 (2021)

    Article  Google Scholar 

  • Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, USA (2014)

    Book  Google Scholar 

  • Singh, B., Toshniwal, D.: MOWM: multiple overlapping window method for RBF based missing value prediction on big data. Expert Syst. Appl. 122, 303–318 (2019). https://doi.org/10.1016/j.eswa.2018.12.060

    Article  Google Scholar 

  • Sun, Y., Xue, B., Zhang, M., et al.: A particle swarm optimization-based flexible convolutional autoencoder for image classification. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2295–2309 (2019). https://doi.org/10.1109/tnnls.2018.2881143

    Article  Google Scholar 

  • Sun, Y., Yen, G.G., Yi, Z.: comment-cator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2019). https://doi.org/10.1109/TEVC.2018.2791283

    Article  Google Scholar 

  • Sun, Y., Xue, B., Zhang, M., et al.: Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans. Cybern. 50(9), 3840–3854 (2020). https://doi.org/10.1109/tcyb.2020.2983860

    Article  Google Scholar 

  • Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)

    Google Scholar 

  • Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25, 285–294 (1933)

    Article  Google Scholar 

  • Turkeš, R., Sörensen, K., Hvattum, L.M.: Meta-analysis of metaheuristics: quantifying the effect of adaptiveness in adaptive large neighborhood search. Eur. J. Oper. Res. 292(2), 423–442 (2021). https://doi.org/10.1016/j.ejor.2020.10.045

    Article  MathSciNet  Google Scholar 

  • Ünal, H.T., Basçiftçi, F.: Evolutionary design of neural network architectures: a review of three decades of research. Artif. Intell. Rev. 55, 1723–1802 (2021)

    Article  Google Scholar 

  • Wan, X., Ru, B., Esparança, P.M., et al.: Approximate neural architecture search via operation distribution learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2377–2386 (2022)

  • Wang, Y., Pan, S., Li, C., et al.: A local search algorithm with reinforcement learning based repair procedure for minimum weight independent dominating set. Inf. Sci. 512, 533–548 (2020). https://doi.org/10.1016/j.ins.2019.09.059

    Article  Google Scholar 

  • Wu, M.T., Tsai, C.W.: Training-free neural architecture search: a review. ICT Express (2023)

  • Zhou, Y., Hao, J.K., Duval, B.: Reinforcement learning based local search for grouping problems: a case study on graph coloring. Expert Syst. Appl. 64, 412–422 (2016). https://doi.org/10.1016/j.eswa.2016.07.047

    Article  Google Scholar 

  • Zielesny, A.: From Curve Fitting to Machine Learning: An Illustrative Guide to Scientific Data Analysis and Computational Intelligence. Intelligent Systems Reference Library. Springer Berlin Heidelberg (2011). https://books.google.com.br/books?id=TG7JUVgVJUIC

Download references

Acknowledgements

This work has been partially supported by Grant 314699/2020-1 of the National Council for Scientific and Technological—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Mara Scós Venske.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venske, S.M.S., de Almeida , C.P. & Delgado , M.R. Metaheuristics and machine learning: an approach with reinforcement learning assisting neural architecture search. J Heuristics (2024). https://doi.org/10.1007/s10732-024-09526-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10732-024-09526-1

Keywords

Navigation