Skip to main content
Log in

Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

A variable neighborhood search (VNS) algorithm has been developed to solve the multiple objective redundancy allocation problems (MORAP). The single objective RAP is to select the proper combination and redundancy levels of components to meet system level constraints, and to optimize the specified objective function. In practice, the need to consider two or more conflicting objectives simultaneously increases nowadays in order to assure managers or designers’ demand. Amongst all system level objectives, maximizing system reliability is the most studied and important one, while system weight or system cost minimization are two other popular objectives to consider. According to the authors’ experience, VNS has successfully solved the single objective RAP (Liang and Chen, Reliab. Eng. Syst. Saf. 92:323–331, 2007; Liang et al., IMA J. Manag. Math. 18:135–155, 2007). Therefore, this study aims at extending the single objective VNS algorithm to a multiple objective version for solving multiple objective redundancy allocation problems. A new selection strategy of base solutions that balances the intensity and diversity of the approximated Pareto front is introduced. The performance of the proposed multi-objective VNS algorithm (MOVNS) is verified by testing on three sets of complex instances with 5, 14 and 14 subsystems respectively. While comparing to the leading heuristics in the literature, the results show that MOVNS is able to generate more non-dominated solutions in a very efficient manner, and performs competitively in all performance measure categories. In other words, computational results reveal the advantages and benefits of VNS on solving multi-objective RAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151, 379–388 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Brimberg, J., Hansen, P., Mladenović, N., Taillard, É.: Improvements and comparison of heuristics for solving the multisource Weber problem. Oper. Res. 48, 444–460 (2000)

    Article  Google Scholar 

  • Bulfin, R.L., Liu, C.Y.: Optimal allocation of redundant components for large systems. IEEE Trans. Reliab. 34, 241–247 (1985)

    Article  MATH  Google Scholar 

  • Chen, T.-C., You, P.-S.: Immune algorithms-based approach for redundant reliability problems with multiple component choices. Comput. Ind. 56, 195–205 (2005)

    Article  Google Scholar 

  • Chen, Y.-C.: Redundancy allocation of series-parallel systems using variable neighbourhood search algorithms. Master Thesis, Yuan Ze University: Taiwan, ROC (in Chinese) (2005)

  • Chern, M.S.: On the computational complexity of reliability redundancy allocation in a series system. Oper. Res. Lett. 11, 309–315 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Coit, D.W., Liu, J.: System reliability optimization with k-out-of-n subsystems. Int. J. Reliab. Qual. Saf. Eng. 7, 129–143 (2000)

    Article  Google Scholar 

  • Coit, D.W., Smith, A.E.: Penalty guided genetic search for reliability design optimization. Comput. Ind. Eng. 30, 895–904 (1996a)

    Article  Google Scholar 

  • Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Trans. Reliab. 45, 254–260 (1996b)

    Article  Google Scholar 

  • Coit, D.W., Smith, A.E.: Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Comput. Oper. Res. 23, 515–526 (1996c)

    Article  MATH  Google Scholar 

  • Elegbede, C., Adjallah, K.: Availability allocation to repairable systems with genetic algorithms a multi-objective formulation. Reliab. Eng. Syst. Saf. 82, 319–330 (2003)

    Article  Google Scholar 

  • Fyffe, D.E., Hines, W.W., Lee, N.K.: System reliability allocation and a computational algorithm. IEEE Trans. Reliab. 17, 74–79 (1968)

    Article  Google Scholar 

  • Gagné, C., Gravel, M., Price, W.L.: Using metaheuristic compromise programming for the solution of multiple objective scheduling problems. J. Oper. Res. Soc. 56, 687–698 (2005)

    Article  MATH  Google Scholar 

  • Geiger, M.J.: Randomized variable neighborhood search for multi objective optimization. In: Proceedings of the 4th EU/ME Workshop: Design and Evaluation of Advanced Hybrid Meta-Heuristics, pp. 34–42. Nottingham, United Kingdom (2004)

  • Geiger, M.J.: Foundations of the Pareto iterated local search metaheuristic. In: Proceedings of the 18th International Conference on Multiple Criteria Decision Making, Chania, Greece (2006)

  • Ghare, P.M., Taylor, R.E.: Optimal redundancy for reliability in series systems. Oper. Res. 17, 838–847 (1969)

    Article  MathSciNet  Google Scholar 

  • Hansen, P., Mladenović, N.: Variable neighborhood search for the P-median. Locat. Sci. 5, 207–226 (1997)

    Article  MATH  Google Scholar 

  • Hansen, P., Mladenović, N.: In: Variable Neighborhood Search. Handbook of Applied Optimization, pp. 221–234. Oxford University Press, New York (2002)

    Google Scholar 

  • Hansen, P., Mladenović, N.: In: Variable Neighborhood Search. Handbook of Metaheuristics, pp. 145–184. Kluwer Academic, Amsterdam (2003)

    Google Scholar 

  • Huang, Y.-C.: Optimization of the series-parallel system with the redundancy allocation problem using a hybrid ant colony algorithm. Master Thesis, Yuan Ze University: Taiwan, ROC (in Chinese) (2003)

  • Huang, Y.-C., Her, Z.-S., Liang, Y.-C.: Redundancy allocation using meta-heuristics. In: Proceedings of the 4th Asia-Pacific Conference on Industrial Engineering and Management System (APIEMS 2002), pp. 1758–1761. Taipei, Taiwan, ROC (2002)

  • Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7, 204–223 (2003)

    Article  Google Scholar 

  • Kulturel-Konak, S., Coit, D.W., Smith, A.E.: Efficiently solving the redundancy allocation problem using tabu search. IIE Trans. 35, 515–526 (2003)

    Article  Google Scholar 

  • Kulturel-Konak, S., Coit, D.W., Baheranwala, F.: Pruned Pareto-optimal sets for the system redundancy allocation problem based on multiple prioritized objectives. J. Heuristics 14, 335–357 (2008)

    Article  MATH  Google Scholar 

  • Kytöjoki, J., Nuortio, T., Bräysy, O., Gendreau, M.: An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Comput. Oper. Res. 34, 2743–2757 (2007)

    Article  MATH  Google Scholar 

  • Li, J.: A bound dynamic programming for solving reliability redundancy optimization. Microelectron. Reliab. 36, 1515–1520 (1996)

    Article  Google Scholar 

  • Liang, Y.-C.: Ant colony optimization approach to combinatorial problems. Ph.D. Dissertation, Auburn University: USA (2001)

  • Liang, Y.-C., Chen, Y.-C.: Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm. Reliab. Eng. Syst. Saf. 92, 323–331 (2007)

    Article  Google Scholar 

  • Liang, Y.-C., Smith, A.E.: Ant colony optimization algorithm for the redundancy allocation problem (RAP). IEEE Trans. Reliab. 53, 417–423 (2004)

    Article  Google Scholar 

  • Liang, Y.-C., Wu, C.-C.: A variable neighbourhood descent algorithm for the redundancy allocation problem. Ind. Eng. Manag. Syst. 4, 109–116 (2005)

    Google Scholar 

  • Liang, Y.-C., Lo, M.-H., Chen, Y.-C.: Variable neighborhood search for redundancy allocation problems. IMA J. Manag. Math. 18, 135–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Misra, K.B., Sharma, U.: An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Trans. Reliab. 40, 81–91 (1991)

    Article  MATH  Google Scholar 

  • Mladenović, N.: Abstracts of papers presented at optimization days: a variable neighborhood algorithm—a new metaheuristic for combinatorial optimization. Montréal (1995)

  • Nahas, N., Nourelfath, M., Ait-Kadi, D.: Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series-parallel system. Reliab. Eng. Syst. Saf. 97, 211–222 (2007)

    Article  Google Scholar 

  • Nakagawa, Y., Miyazaki, S.: Surrogate constraints algorithm for reliability optimization problems with two constraints. IEEE Trans. Reliab. 30, 175–180 (1981)

    Article  MATH  Google Scholar 

  • Onishi, J., Kimura, S., James, R.J.W., Nakagawa, Y.: Solving the redundancy allocation problem with a mix of components using the improved surrogate constraint method. IEEE Trans. Reliab. 56, 94–101 (2007)

    Article  Google Scholar 

  • Ravi, V.: Optimization of complex system reliability by a modified great Deluge algorithm. Asia-Pac. J. Oper. Res. 21, 487–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Ravi, V., Murty, B.S.N., Reddy, P.J.: Nonequilibrium simulated annealing algorithm applied to reliability optimization of complex system. IEEE Trans. Reliab. 46, 233–239 (1997)

    Article  Google Scholar 

  • Ribeiro, C.C., Souza, M.C.: Variable neighborhood search for the degree-constrained minimum spanning tree problem. Discrete Appl. Math. 118, 43–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Salazar, D., Rocco, C.M., Galván, B.J.: Optimization of constrained multiple-objective reliability problems using evolutionary algorithms. Reliab. Eng. Syst. Saf. 91, 1057–1070 (2006)

    Article  Google Scholar 

  • Sasaki, M., Gen, M.: A method of fuzzy multi-objective nonlinear programming with GUB structure by hybrid genetic algorithm. Int. J. Smart Eng. Syst. Des. 5, 281–288 (2003)

    Article  Google Scholar 

  • Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: Ant algorithm for single and multiobjective reliability optimization problems. Qual. Reliab. Eng. Int. 18, 497–514 (2002)

    Article  Google Scholar 

  • Stummer, C., Sun, M.: New multiobjective metaheuristic solution procedures for capital investment planning. J. Heuristics 11, 183–199 (2005)

    Article  MATH  Google Scholar 

  • Taboada, H.A., Baheranwala, F., Coit, D.W., Wattanapongsakorn, N.: : Practical solutions for multi-objective optimization: an application to system reliability design problems. Reliab. Eng. Syst. Saf. 92(3), 314–322 (2007)

    Article  Google Scholar 

  • Tillman, F.A., Hwang, C.L., Kuo, W.: Determining component reliability and redundancy for optimum system reliability. IEEE Trans. Reliab. 26, 162–165 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Tillman, F.A., Hwang, C.L., Kuo, W.: Optimization of System Reliability. Marcel Dekker, New York (1985)

    Google Scholar 

  • You, P.-S., Chen, T.-C.: An efficient heuristic for series—parallel redundant reliability problems. Comput. Oper. Res. 32, 2117–2127 (2005)

    Article  MATH  Google Scholar 

  • Zhao, J.-H., Liu, Z., Dao, M.-T.: Reliability optimization using multiobjective ant colony system approaches. Reliab. Eng. Syst. Saf. 92, 109–120 (2007)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Chia Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, YC., Lo, MH. Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. J Heuristics 16, 511–535 (2010). https://doi.org/10.1007/s10732-009-9108-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-009-9108-4

Keywords

Navigation