Skip to main content
Log in

Ranking Candidates Through Convex Sequences of Variable Weights

  • Published:
Group Decision and Negotiation Aims and scope Submit manuscript

Abstract

Scoring rules are a well-known class of positional voting systems where fixed scores are assigned to the different ranks. Nevertheless, since the winners may change according to the scores used, the choice of the scoring vector is not obvious. For this reason several methods have been suggested so that each candidate may be evaluated with the most favorable scoring vector for him/her. In this paper we propose a new model that allows to use different scoring vector for each candidate and avoid some shortcomings of other methods suggested in the literature. Moreover we give a closed expression for the score obtained by each candidate and, in this way, it is possible to rank the candidates without solving the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amin GR, Sadeghi H (2010) Application of prioritized aggregation operators in preference voting. Int J Intell Syst 25(10):1027–1034

    Article  Google Scholar 

  • Andersen P, Petersen NC (1993) A procedure for ranking efficient units in data envelopment analysis. Manag Sci 39(10):1261–1264

    Article  Google Scholar 

  • Contreras I (2011) A DEA-inspired procedure for the aggregation of preferences. Expert Syst Appl 38(1):564–570

    Article  Google Scholar 

  • Contreras I, Hinojosa MA, Mármol AM (2005) A class of flexible weight indices for ranking alternatives. IMA J Manag Math 16(1):71–85

    Article  Google Scholar 

  • Cook WD, Kress M (1990) A data envelopment model for aggregating preference rankings. Manag Sci 36(11):1302–1310

    Article  Google Scholar 

  • Ebrahimnejad A (2012) A new approach for ranking of candidates in voting systems. OPSEARCH 49(2):103–115

    Article  Google Scholar 

  • Fishburn PC (1974) Paradoxes of voting. Am Polit Sci Rev 68(2):537–546

    Article  Google Scholar 

  • Foroughi AA, Aouni B (2012) New approaches for determining a common set of weights for a voting system. Int Trans Oper Res 19(4):521–530

    Article  Google Scholar 

  • Foroughi AA, Tamiz M (2005) An effective total ranking model for a ranked voting system. Omega 33(6):491–496

    Article  Google Scholar 

  • Foroughi AA, Jones DF, Tamiz M (2005) A selection method for a preferential election. Appl Math Comput 163(1):107–116

    Article  Google Scholar 

  • Green RH, Doyle JR, Cook WD (1996) Preference voting and project ranking using DEA and cross-evaluation. Eur J Oper Res 90(3):461–472

    Article  Google Scholar 

  • Hadi-Vencheh A (2014) Two effective total ranking models for preference voting and aggregation. Math Sci 8(1):1–4 Article 115

    Article  Google Scholar 

  • Hashimoto A (1997) A ranked voting system using a DEA/AR exclusion model: a note. Eur J Oper Res 97(3):600–604

    Article  Google Scholar 

  • Hashimoto A, Wu DA (2004) A DEA-compromise programming model for comprehensive ranking. J Oper Res Soc Jpn 47(2):73–81

    Google Scholar 

  • Hosseinzadeh Lotfi F, Fallahnejad R (2011) A note on “A solution method to the problem proposed by Wang in voting systems”. Appl Math Sci 5(62):3051–3055

    Google Scholar 

  • Hosseinzadeh Lotfi F, Rostamy-Malkhalifeh M, Aghayi N, Ghelej Beigi Z, Gholami K (2013) An improved method for ranking alternatives in multiple criteria decision analysis. Appl Math Modell 37(1–2):25–33

    Article  Google Scholar 

  • Llamazares B, Peña T (2009) Preference aggregation and DEA: an analysis of the methods proposed to discriminate efficient candidates. Eur J Oper Res 197(2):714–721

    Article  Google Scholar 

  • Llamazares B, Peña T (2013) Aggregating preferences rankings with variable weights. Eur J Oper Res 230(2):348–355

    Article  Google Scholar 

  • Llamazares B, Peña T (2015a) Positional voting systems generated by cumulative standings functions. Group Decis Negot 24(5):777–801

    Article  Google Scholar 

  • Llamazares B, Peña T (2015b) Scoring rules and social choice properties: some characterizations. Theory Decis 78(3):429–450

    Article  Google Scholar 

  • Noguchi H, Ogawa M, Ishii H (2002) The appropriate total ranking method using DEA for multiple categorized purposes. J Comput Appl Math 146(1):155–166

    Article  Google Scholar 

  • Obata T, Ishii H (2003) A method for discriminating efficient candidates with ranked voting data. Eur J Oper Res 151(1):233–237

    Article  Google Scholar 

  • Soltanifar M, Ebrahimnejad A, Farrokhi MM (2010) Ranking of different ranking models using a voting model and its application in determining efficient candidates. Int J Soc Syst Sci 2(4):375–389

    Article  Google Scholar 

  • Stein WE, Mizzi PJ, Pfaffenberger RC (1994) A stochastic dominance analysis of ranked voting systems with scoring. Eur J Oper Res 74(1):78–85

    Article  Google Scholar 

  • Wang NS, Yi RH, Liu D (2008) A solution method to the problem proposed by Wang in voting systems. J Comput Appl Math 221(1):106–113

    Article  Google Scholar 

  • Wang YM, Chin KS (2007) Discriminating DEA efficient candidates by considering their least relative total scores. J Comput Appl Math 206(1):209–215

    Article  Google Scholar 

  • Wang YM, Chin KS, Yang JB (2007a) Three new models for preference voting and aggregation. J Oper Res Soc 58(10):1389–1393

    Article  Google Scholar 

  • Wang YM, Luo Y, Hua Z (2007b) Aggregating preference rankings using OWA operator weights. Inform Sci 177(16):3356–3363

    Article  Google Scholar 

  • Wu J, Liang L, Zha Y (2009) Preference voting and ranking using DEA game cross efficiency model. J Oper Res Soc Jpn 52(2):105–111

    Google Scholar 

Download references

Acknowledgments

The author is very grateful to two anonymous referees for valuable suggestions, comments and references. The financial support from the Ministerio español de Economía y Competitividad (Project ECO2012-32178) and the Junta de Castilla y León (Consejería de Educación, Project VA066U13) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonifacio Llamazares.

Appendix

Appendix

Proof of Lemma 1

Given Model (3), we consider the following change of variables:

$$\begin{aligned} \left\{ \begin{aligned}&s_{j}=w_{j}-w_{j+1}, \quad \text {for all } j\in \{1,\dots , k-1\},\\&s_{k}=w_{k}. \end{aligned} \right. \end{aligned}$$

It is easy to check that \(w_{j}=\sum _{p=j}^{k} s_{p}\,\) for all \(j\in \{1,\dots , k\}\) and that the set of constraints

$$\begin{aligned} \left\{ \begin{aligned}&w_j-w_{j+1} \ge w_{j+1}-w_{j+2},&j=1,\dots ,k-2,\\&w_{k-1}-w_{k} \ge w_{k}, \\&w_k \ge \varepsilon . \end{aligned} \right. \end{aligned}$$

is equivalent to the set

$$\begin{aligned} \left\{ \begin{aligned}&s_{j} \ge s_{j+1},&j=1,\dots ,k-1,\\&s_{k} \ge \varepsilon . \end{aligned} \right. \end{aligned}$$

Let us make yet another change of variables:

$$\begin{aligned} \left\{ \begin{aligned}&W_{j}=s_{j}-s_{j+1}, \quad \text {for all } j\in \{1,\dots , k-1\},\\&W_{k}=s_{k}-\varepsilon . \end{aligned} \right. \end{aligned}$$

From the previous relationships, variables \(W_{j}\) can be expressed as functions of variables \(w_{j}\) in the following way:

$$\begin{aligned} \left\{ \begin{aligned}&W_{j} = s_{j}-s_{j+1} = w_{j}-2w_{j+1}+w_{j+2}, \quad \text {for all }\quad j\in \{1,\dots , k-2\},\\&W_{k-1} = s_{k-1}-s_{k} = w_{k-1}-2w_{k},\\&W_{k} = w_{k}-\varepsilon . \end{aligned} \right. \end{aligned}$$

Furthermore, it is easy to see that \(s_{j}=\sum _{l=j}^{k} W_{l}+\varepsilon \,\) for all \(j\in \{1,\dots , k\}\). Therefore,

$$\begin{aligned} w_{j}&= \sum _{p=j}^{k} s_{p} = \sum _{p=j}^{k} \left( \sum _{l=p}^{k} W_{l}+\varepsilon \right) = \mathop {\mathop {\sum }\limits _{{j\le p \le k}}}\limits _{{p\le l\le k}} W_{l} + \sum _{p=j}^{k} \varepsilon = \sum _{j\le p \le l\le k} W_{l} + (k+1-j)\varepsilon \\&= \sum _{l=j}^{k} \sum _{p=j}^{l} W_{l} + (k+1-j)\varepsilon = \sum _{l=j}^{k} (l+1-j)W_{l} + (k+1-j)\varepsilon . \end{aligned}$$

Next we write the remaining expressions of Model (3) as functions of the variables \(W_{j}\):

$$\begin{aligned} \sum _{j=1}^k v_{oj} w_j&= \sum _{j=1}^k v_{oj}\left( \sum _{l=j}^{k} (l+1-j)W_l + (k+1-j)\varepsilon \right) \\&= \mathop {\mathop {\sum }\limits _{{1\le j \le k}}}\limits _{{j\le l\le k}} (l+1-j) v_{oj} W_{l} + \varepsilon \sum _{j=1}^k (k+1-j) v_{oj}\\&= \sum _{1\le j \le l\le k} (l+1-j) v_{oj} W_{l} + \varepsilon \sum _{j=1}^k (k+1-j) v_{oj}\\&= \mathop {\mathop {\sum }\limits _{{1\le l \le k}}}\limits _{{1\le j\le l}} (l+1-j) v_{oj} W_{l} + \varepsilon \sum _{j=1}^k (k+1-j) v_{oj}\\&= \sum _{l=1}^k W_{l} \left( \sum _{j=1}^{l} (l+1-j) v_{oj}\right) + \varepsilon \sum _{j=1}^k (k+1-j) v_{oj}\\&= \sum _{j=1}^k W_{j} \left( \sum _{l=1}^{j} (j+1-l) v_{ol}\right) + \varepsilon \sum _{l=1}^k (k+1-l) v_{ol}, \end{aligned}$$

where the last equality is obtained by changing the role of j and l. If we denote \(\sum _{l=1}^{j} (j+1-l) v_{ol}\) by \(V_{oj}\) for all \(j\in \{1,\dots ,k\}\), then we have

$$\begin{aligned} \sum _{j=1}^k v_{oj} w_j = \sum _{j=1}^k V_{oj} W_j + \varepsilon V_{ok}. \end{aligned}$$

Analogously,

$$\begin{aligned} \sum _{j=1}^k (n-v_{oj}) w_j = n \sum _{j=1}^k w_{j} - \sum _{j=1}^k v_{oj}w_{j} = n \sum _{j=1}^k w_{j} - \sum _{j=1}^k V_{oj} W_j - \varepsilon V_{ok}. \end{aligned}$$

Given that

$$\begin{aligned} \sum _{j=1}^k w_j&= \sum _{j=1}^k \left( \sum _{l=j}^{k} (l+1-j)W_l + (k+1-j) \varepsilon \right) \\&= \mathop {\mathop {\sum }\limits _{{1\le j \le k}}}\limits _{{j\le l\le k}} (l+1-j)W_{l} + \varepsilon \sum _{j=1}^k (k+1-j) = \sum _{1\le j \le l\le k} (l+1-j)W_{l} + \varepsilon \frac{k(k+1)}{2}\\&= \mathop {\mathop {\sum }\limits _{{1\le l \le k}}}\limits _{{1\le j\le l}} (l+1-j)W_{l} + \varepsilon \frac{k(k+1)}{2} = \sum _{l=1}^k W_{l} \left( \sum _{j=1}^{l} (l+1-j)\right) + \varepsilon \frac{k(k+1)}{2}\\&= \sum _{l=1}^k \frac{l(l+1)}{2} W_{l} + \varepsilon \frac{k(k+1)}{2}, \end{aligned}$$

we have

$$\begin{aligned} \sum _{j=1}^k (n-v_{oj}) w_j&= \sum _{j=1}^k \frac{nj(j+1)}{2} W_{j} + \varepsilon \frac{nk(k+1)}{2}- \sum _{j=1}^k V_{oj} W_j - \varepsilon V_{ok}\\&= \sum _{j=1}^k \left( \frac{nj(j+1)}{2}-V_{oj}\right) W_j +\left( \frac{nk(k+1)}{2}- V_{ok}\right) \varepsilon . \end{aligned}$$

Therefore, the constraint

$$\begin{aligned} \sum _{j=1}^k (n-v_{oj}) w_j\le m-1 \end{aligned}$$

can be written as

$$\begin{aligned} \sum _{j=1}^k \left( \frac{nj(j+1)}{2}-V_{oj}\right) W_j +\left( \frac{nk(k+1)}{2}- V_{ok}\right) \varepsilon \le m-1. \end{aligned}$$

If we consider

$$\begin{aligned} \delta _{o}(\varepsilon ) = (m-1)- \left( \frac{nk(k+1)}{2}- V_{ok}\right) \varepsilon , \end{aligned}$$

then Model (3) can be expressed as

$$\begin{aligned} \widehat{Z}_o^{*}(\varepsilon ) = \max&\,\, \sum _{j=1}^k V_{oj} W_j + \varepsilon V_{ok},\\ {\mathrm {s.t.}}&\,\, \sum _{j=1}^k \left( \frac{nj(j+1)}{2}-V_{oj}\right) W_j \le \delta _{o}(\varepsilon ),\\&\,\, W_j\ge 0,\quad j=1,\dots ,k. \end{aligned}$$

\(\square \)

Proof of Theorem 1

Model (4) is equivalent to the following one:

$$\begin{aligned} \widehat{Z}'_o(\varepsilon ) = \max&\,\, \sum _{j=1}^k V_{oj} W_j,\\ {\mathrm {s.t.}}&\,\, \sum _{j=1}^k \left( \frac{nj(j+1)}{2}-V_{oj}\right) W_j \le \delta _{o}(\varepsilon ),\\&\,\, W_j\ge 0,\quad j=1,\dots ,k. \end{aligned}$$

Moreover \(\widehat{Z}_o^{*}(\varepsilon )=\widehat{Z}'_o(\varepsilon ) + \varepsilon V_{ok}\). It is well known that if a linear program has an optimal solution, then its dual also has an optimal solution and the optimal values for both problems are equal. Therefore, it is sufficient to solve the dual of the previous problem, that is,

$$\begin{aligned} \min&\,\, \delta _{o}(\varepsilon ) X,\\ {\mathrm {s.t.}}&\,\, \left( \frac{nj(j+1)}{2}-V_{oj}\right) X\ge V_{oj},\quad j=1,\dots ,k,\\&\,\,\, X\ge 0. \end{aligned}$$

It is easy to check that the optimal solution is

$$\begin{aligned} X^{*}=V_{o}^{*} =\displaystyle \max _{j=1,\dots ,k}\frac{V_{oj}}{\displaystyle \frac{nj(j+1)}{2}-V_{oj}}. \end{aligned}$$

Therefore, \(\widehat{Z}'_o(\varepsilon ) = \delta _{o}(\varepsilon ) V_{o}^{*}\) and \(\widehat{Z}_o^{*}(\varepsilon ) = \delta _{o}(\varepsilon ) V_{o}^{*} + \varepsilon V_{ok}\). \(\square \)

Proof of Proposition 1

We distinguish two cases:

  1. 1.

    If a candidate \(A_{o}\) gets all the first ranks, then he/she is the winner according with Model (5). On the other hand, since \(v_{o1}=n\), we have \(V_{oj}=j v_{o1} + (j-1) v_{o2} + \cdots + v_{oj}= jn\). Therefore,

    $$\begin{aligned} Z_{o} = \max _{j=1,\dots ,k} \frac{V_{oj}}{\displaystyle \frac{j(j+1)}{2}} = \max _{j=1,\dots ,k} \frac{2n}{j+1}=n. \end{aligned}$$

    Let \(A_i\) be a different candidate. Then \(v_{i1}=0\), \(V_{ij}=(j-1) v_{i2} + \cdots + v_{ij} \le (j-1) n\), and

    $$\begin{aligned} Z_{i} = \max _{j=1,\dots ,k} \frac{V_{ij}}{\displaystyle \frac{j(j+1)}{2}} \le \max _{j=1,\dots ,k} \frac{2(j-1)n}{j(j+1)} < n. \end{aligned}$$

    Therefore \(Z_{o} > Z_{i}\).

  2. 2.

    If no candidate obtains all the first ranks, let \(A_{o}\) and \(A_i\) be two candidates such that \(V_{o1}<n\) and \(V_{i1}<n\). Given that

    $$\begin{aligned}&\,\, \frac{V_{oj}}{\displaystyle \frac{nj(j+1)}{2}-V_{oj}} > \frac{V_{il}}{\displaystyle \frac{nl(l+1)}{2}-V_{il}}\\&\Leftrightarrow \,\, \frac{nl(l+1)}{2}V_{oj} - V_{il}V_{oj} > \frac{nj(j+1)}{2}V_{il} - V_{oj}V_{il}\\&\Leftrightarrow \,\, \frac{l(l+1)}{2}V_{oj} > \frac{j(j+1)}{2}V_{il} \,\, \Leftrightarrow \,\, \frac{V_{oj}}{\displaystyle \frac{j(j+1)}{2}} > \frac{V_{il}}{\displaystyle \frac{l(l+1)}{2}} \end{aligned}$$

    for all \(j,l\in \{1,\dots ,k\}\), we have

    $$\begin{aligned}&\,\, \max _{j=1,\dots ,k}\frac{V_{oj}}{\displaystyle \frac{nj(j+1)}{2}-V_{oj}} > \max _{j=1,\dots ,k}\frac{V_{ij}}{\displaystyle \frac{nj(j+1)}{2}-V_{ij}} \\&\Leftrightarrow \,\, \max _{j=1,\dots ,k} \frac{V_{oj}}{\displaystyle \frac{j(j+1)}{2}} > \max _{j=1,\dots ,k} \frac{V_{il}}{\displaystyle \frac{l(l+1)}{2}}; \end{aligned}$$

    that is,

    $$\begin{aligned} \widehat{Z}_o^{*} > \widehat{Z}_i^{*} \;\Leftrightarrow \; Z_{o} > Z_{i}. \end{aligned}$$

\(\square \)

Proof of Theorem 2

$$\begin{aligned} \overline{Z}_o&= \frac{1}{\varepsilon _{o}^{*}} \int _{0}^{\varepsilon _{o}^{*}}\widehat{Z}_o^{*}(\varepsilon )\, d\varepsilon \\&= \frac{1}{\varepsilon _{o}^{*}}\int _{0}^{\varepsilon _{o}^{*}} \left( (m-1)V_{o}^{*} + \varepsilon \left( V_{ok}-V_{o}^{*}\left( \frac{nk(k+1)}{2}-V_{ok}\right) \right) \right) \, d\varepsilon \\&= (m-1)V_{o}^{*} + \left( V_{ok}-V_{o}^{*}\left( \frac{nk(k+1)}{2}-V_{ok}\right) \right) \frac{1}{\varepsilon _{o}^{*}} \int _{0}^{\varepsilon _{o}^{*}}\varepsilon \, d\varepsilon \\&= (m-1)V_{o}^{*} + \left( V_{ok}-V_{o}^{*}\left( \frac{nk(k+1)}{2}-V_{ok}\right) \right) \frac{\varepsilon _{o}^{*}}{2}\\&= (m-1)V_{o}^{*} + \left( V_{ok}-V_{o}^{*}\left( \frac{nk(k+1)}{2}-V_{ok}\right) \right) \frac{m-1}{2\left( \displaystyle \frac{nk(k+1)}{2}-V_{ok}\right) }\\&= (m-1)V_{o}^{*}+ \frac{m-1}{2}\frac{V_{ok}}{2\left( \displaystyle \frac{nk(k+1)}{2}-V_{ok}\right) } - \frac{m-1}{2}V_{o}^{*}\\&= \frac{m-1}{2}\left( V_{o}^{*}+\frac{V_{ok}}{\displaystyle \frac{nk(k+1)}{2}-V_{ok}}\right) = (m-1)\frac{V_{o}^{*} + V_{o}^{k}}{2}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llamazares, B. Ranking Candidates Through Convex Sequences of Variable Weights. Group Decis Negot 25, 567–584 (2016). https://doi.org/10.1007/s10726-015-9452-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10726-015-9452-8

Keywords

Navigation